MP5 Physique

plan du cours de physique quantique

fonction d'onde et équation de Schrödinger

I. NOTION DE FONCTION D'ONDE:

définition-postulat : toute particule est décrite par une fonction d'onde $\psi(M,t)$ dont la signification est la suivante : la probabilité de présence de la particule, à l'instant t, dans le volume $d\tau(M)$, est : $dP(M,t) = |\psi(M,t)|^2 . d\tau(M)$

définition : la densité de probabilité de présence de la particule, à l'instant t, est : $\rho(M,t) = \frac{dP(M,t)}{d\tau(M)} = \left| \psi(M,t) \right|^2$

$$\text{condition de normalisation}: \underset{\text{espace}}{\iiint} \rho(M,t) d\tau(M) = 1 \text{ ou bien}: \quad \underset{\text{espace}}{\iiint} |\Psi(M,t)|^2 d\tau(M) = 1$$

définition : s'il existe plusieurs états possibles pour une particule, on dit que deux états Ψ_1 et Ψ_2 sont orthogonaux si, et seulement si : $\iiint_{espace} \Psi_1 \overline{\Psi_2} d\tau = 0$ ou bien : $\iiint_{espace} \overline{\Psi_1} \Psi_2 d\tau = 0$

II. ÉQUATION DE SCHRÖDINGER À UNE DIMENSION:

1. Cas d'une particule libre

équation vérifiée par la fonction d'onde d'une particule libre, à une dimension :

$$-\frac{2}{2m}\frac{\partial^2 \Psi}{\partial x^2} = j \frac{\partial \Psi}{\partial t}$$
 (S1L)

2. Cas général

équation vérifiée par la fonction d'onde d'une particule placée dans un potentiel V(x), à une dimension :

$$-\frac{2}{2m}\frac{\partial^2 \psi}{\partial x^2} + V.\psi = j \frac{\partial \psi}{\partial t}$$
 (S1)

généralisation : équation vérifiée par la fonction d'onde d'une particule placée dans un potentiel V(x), à trois dimensions :

$$-\frac{2}{2m}\Delta\psi + V.\psi = j \frac{\partial\psi}{\partial t}$$
 (S3)

3. Conséquences de la linéarité de l'équation de Schrödinger

(S3) est linéaire ; donc toute combinaison linéaire de solutions de (S3) est aussi solution de (S3)

III. ÉQUATION DE SCHRÖDINGER INDÉPENDANTE DU TEMPS:

1. États stationnaires de l'équation de Schrödinger

si on cherche une solution de (S1) sous la forme : $\psi(x,t) = \psi(x).f(t)$, alors $\psi(x)$. vérifie l'équation différentielle suivante :

$$-\frac{2}{2m}\frac{d^2\psi}{dx^2} + V(x).\psi(x) = E.\psi(x)$$
 (S'1)

notation : on appelle opérateur hamiltonien l'opérateur : $\hat{H} = -\frac{^2}{2m} \frac{d^2}{dx^2} + V(x).$

l'équation de Schrödinger (S'1) se réécrit alors : $\hat{H} \psi = E.\psi$.

Cette dernière équation est une équation aux valeurs propres de l'opérateur hamiltonien, les différentes fonctions $\psi(x)$ possibles étant les fonctions propres de cet opérateur

étude de la partie temporelle de la fonction d'onde :

théorème :
$$f(t) = A.exp(-j\omega t) = A.exp(-j\frac{E}{t})$$

étude de la fonction d'onde complète :

théorème :
$$\psi(x,t) = \psi(x) \cdot \exp(-j\omega t) = \psi(x) \cdot \exp(-j\frac{E}{t}t)$$

où : $\psi(x)$ vérifie : $\hat{H}\psi = E.\psi$

2. Lien entre fonction d'onde stationnaire et fonction d'onde non stationnaire

toute solution de l'équation de Schrödinger peut s'écrire comme une somme de solutions stationnaires de l'équation de Schrödinger

3. Évolution temporelle d'un état quelconque

théorème : la fonction d'onde la plus générale est de la forme :
$$\psi(x,t) = \sum \alpha_i \psi_i(x) exp \bigg(-j \frac{E_i}{} t \bigg)$$

conséquence : $|\psi(x,t)|^2$ dépend de t

IV. LA PARTICULE LIBRE:

1. Normalisation de la fonction d'onde :

pour l'onde plane monochromatique de de Broglie : $\int_{-\infty}^{+\infty} \rho(x,t) dx = \infty$ cette onde ne peut donc pas décrire un état physique réel

2. Paquet d'ondes

cf cours d'optique ondulatoire

3. <u>Dispersion et étalement pour une particule libre</u>

un paquet d'ondes ayant une certaine extension spatiale à t=0 voit cette extension spatiale augmenter au cours du temps, au fur et à mesure de la propagation de ce paquet d'ondes ; en même temps que la largeur (spatiale) du paquet d'ondes augmente son amplitude (ou sa hauteur !) diminue : il y a étalement du paquet d'ondes

4. <u>Inégalité de Heisenberg spatiale et paquet d'ondes</u>

cf cours d'optique ondulatoire

5. Densité de courant de probabilité associée à une particule libre :

théorème :
$$J = \left| \psi \right|^2 - k = \left| \psi \right|^2 v_g = \left| \psi \right|^2 v$$