Physique

complément au cours de mécanique

RAPPELS SUR LES TORSEURS

I) DÉFINITION D'UN TORSEUR:

1) Champ vectoriel (rappel):

définition : un champ vectoriel V est une application d'un espace affine (A) dans son espace vectoriel associé (E) : $P \in (A) \rightarrow V_{\mathbf{p}} \in (E)$

2) Torseur:

définition : un torseur est un champ vectoriel M équiprojectif, c'est-à-dire tel que :

$$\forall P,Q \in (A), M_P.PQ = M_Q.PQ$$

II) CARACTÉRISATION D'UN TORSEUR:

1) Champ vectoriel affine:

définition : un champ vectoriel $V: P \in (A) \rightarrow V_P \in (E)$ est un champ vectoriel affine si, et seulement s'il existe un point O de (A) et un endomorphisme f de (E) tels que :

$$\forall P \in (A), V_P = V_O + f(\overrightarrow{OP})$$

2) Endomorphisme antisymétrique de (E) :

définition : une application f de (E) dans (E) est antisymétrique si, et seulement si :

$$\forall x, y \in (E), x.f(y) = -y.f(x)$$

théorème : une application f de (E) dans (E) antisymétrique est linéaire (c'est-à-dire est un endomorphisme de <math>(E))

3) Équivalence entre champ vectoriel équiprojectif et champ vectoriel affine dont l'endomorphisme associé est antisymétrique :

théorème : un champ vectoriel M est un champ équiprojectif si, et seulement si M est un champ vectoriel affine dont l'endomorphisme associé est antisymétrique

4) Résultante d'un torseur :

théorème : M est un torseur, si et seulement s'il existe un vecteur R unique appartenant à (E) tel que :

$$\forall P, Q \in (A), M_Q = M_P + R \wedge PQ$$

où: R est la résultante du torseur

 $M_{\mathbf{p}}$ est le moment en P du torseur (de résultante $\,R\,$)

notation : le torseur de moment en P M_P et de résultante R sera noté : $\{T\} = \begin{Bmatrix} R \\ M_P \end{Bmatrix}$

5) Invariant scalaire:

définition-théorème : pour un torseur $\{T\} = \begin{Bmatrix} R \\ M_P \end{Bmatrix}$, le produit scalaire : $J = R.M_P$ est indépendant du point P ; on l'appelle invariant scalaire du torseur

III) COMPOSITION DE TORSEURS:

1) Somme de deux torseurs :

 $\begin{aligned} &\text{d\'efinition-th\'eor\`eme}: \text{ si} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$

2) Dérivée d'un torseur par rapport au temps :

ATTENTION : la dérivée d'un torseur par rapport au temps t n'est pas un torseur !

3) Comoment ou produit scalaire de deux torseurs :

définition : le comoment ou produit (scalaire) $\{T_1\} \otimes \{T_2\}$ des deux torseurs $\{T_1\} = \begin{cases} \mathbf{R_1} \\ \mathbf{M_{1P}} \end{cases}$ et

$$\{T_2\} = \begin{cases} \mathbf{R}_2 \\ \mathbf{M}_{2P} \end{cases} \text{ est : } \qquad \{T_1\} \otimes \{T_2\} = \mathbf{R}_1 \cdot \mathbf{M}_{2P} + \mathbf{R}_2 \cdot \mathbf{M}_{1P}$$

théorème : le comoment ou produit (scalaire) de deux torseurs est indépendant du point où on le calcule

4) Moment d'un torseur par rapport à un axe:

définition-théorème : le moment $M(\Delta,K)$ d'un torseur $\{T\}=_{\mathbf{P}}\begin{cases}\mathbf{R}\\\mathbf{M}_{\mathbf{P}}\end{cases}$ par rapport à un axe $\Delta=(u,K)$ est:

 $M(\Delta, K) = u.M_{K}$, qui est indépendant du point K choisi sur l'axe

IV) TORSEURS ELEMENTAIRES, C'EST-A-DIRE D'INVARIANT SCALAIRE NUL:

1) Torseur nul

2) Couple :

définition : un torseur $(T) = \begin{cases} R \\ M \end{cases}$ est un couple si, et seulement si sa résultante R est nulle : R = 0

théorème : un couple est un champ vectoriel uniforme

3) Glisseur:

définition : un torseur $(T) = \begin{cases} R \\ M \end{cases}$ est un glisseur si, et seulement si sa résultante est non nulle et que son

invariant scalaire est nul : $R \neq 0$ et J = 0

théorème : si et seulement si un torseur $\{T\}$ est un glisseur, il existe une infinité de points de (A) où le moment est nul ; ces points sont portés par une droite colinéaire à la résultante R, appelée axe du glisseur

V) DÉCOMPOSITION D'UN TORSEUR:

1) Première décomposition :

théorème : un point P de A étant choisi, un torseur se décompose, de façon unique, en somme d'un couple et d'un glisseur dont l'axe passe par A

2) Deuxième décomposition : axe d'un torseur :

théorème : un torseur $\{T\}$ se décompose de façon unique en somme d'un couple et d'un glisseur colinéaires (c'est-à-dire tels que l'axe du glisseur soit parallèle au moment du couple en tout point de cet axe)

théorème : il existe une infinité de points P de (A) où M_P est colinéaire à la résultante R du torseur; ces points constituent une droite, appelée axe du torseur, qui est colinéaire à R

théorème : l'axe d'un torseur est l'ensemble des points où le moment a un module minimal

