
CHA P T E R 1
Previous Week Solution

You can load the solution of the previous week using the following snippet:

Gofer new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadWeek4Correction

To test the code, you should start the Seaside HTTP server using the Seaside
Control Panel tool (cf. previous week) or directly execute the following code:

ZnZincServerAdaptor startOn: 8080.

You might also need to create some posts:

TBBlog reset ;
createDemoPosts

Before continuing, stop the Teapot server:

TBTeapotWebApp stop

1

CHA P T E R2
Describe your Model Data with

Magritte

Magritte is a library to describe data. Using Magritte descriptions, you can
then generate various representations for your data or operations such as re-
quests. Combined with Seaside, Magritte enable HTML forms and reports
generation. The Quuve software (cf. http://www.pharo.org/success) of De-
bris Publishing company is a brilliant example of Magritte powerfulness:
all HTML tables have been automatically generated. Data validation is also
defined in Magritte descriptions and not spread in the UI code. This tuto-
rial will not describe this but you can refer to the Seaside book (http://book.
seaside.st) and the Magritte tutorial (https://github.com/SquareBracketAssociates/

Magritte).

This week, we will start by describing with Magritte the five instance vairables
of TBPost, then we will use these descriptions to automatically generate Sea-
side components.

2.1 Magritte Descriptions

The five following methods classified in the ’descriptions’ protocol of TB-
Post. Note that the name of these methods does not matter although we use
naming convention. In fact, the <magritteDescription> pragma allows
Magritte to retrieve descriptions.

A post title is a string and must be filled (required).

TBPost >> descriptionTitle
<magritteDescription>
^ MAStringDescription new

3

http://www.pharo.org/success
http://book.seaside.st
http://book.seaside.st
https://github.com/SquareBracketAssociates/Magritte
https://github.com/SquareBracketAssociates/Magritte

Describe your Model Data with Magritte

accessor: #title;
beRequired;
yourself

The text of a post is a multi-line string that is also mandatory.

TBPost >> descriptionText
<magritteDescription>
^ MAMemoDescription new

accessor: #text;
beRequired;
yourself

The category of a post is an optional string. If it is not specified, the post will
belong to the ’Unclassified’ category.

TBPost >> descriptionCategory
<magritteDescription>
^ MAStringDescription new

accessor: #category;
yourself

The creation date of a post is important to sort posts before displaying them.

TBPost >> descriptionDate
<magritteDescription>
^ MADateDescription new

accessor: #date;
beRequired;
yourself

The visible instance variable must be a boolean value.

TBPost >> descriptionVisible
<magritteDescription>
^ MABooleanDescription new

accessor: #visible;
beRequired;
yourself

2.2 Possible Enhancements

We could improve these descriptions and make them more complete. For ex-
ample, ensure that the date of a new post cannot be before the current date.
We could also define the category of post must be one the already existing
categories. With richer descriptions, you can produce more complete gener-
ated UI elements.

4

CHA P T E R3
Administration UI of TinyBlog

We will now develop the Administration UI of TinyBlog. Through this exer-
cise, we will show how to use session information and Magritte descriptions
to define reports. Our objective is: the user should be able to log in using a
login and a password to access the administration part of TinyBlog. The link
to log in will be placed below the list of categories.

3.1 Authentification Component

Let’s start by developing an authentification Component that will open a
modal dialog asking for a login and a password. Note that such a function-
nality should be part of a component library of Seaside.

This component illustrates how values can be elegantly retrieved from the
user directly the instance variable of the component.

WAComponent subclass: #TBAuthentificationComponent
instanceVariableNames: 'password account component'
classVariableNames: ''
category: 'TinyBlog-Components'

TBAuthentificationComponent >> account
^ account

TBAuthentificationComponent >> account: anObject
^ account := anObject

TBAuthentificationComponent >> password
^ password

5

Administration UI of TinyBlog

TBAuthentificationComponent >> password: anObject
^ password := anObject

TBAuthentificationComponent >> component
^ component

TBAuthentificationComponent >> component: anObject
component := anObject

The component instance variable is initialized by the following class-side
method:

TBauthenticationComponent class >> from: aComponent
^ self new component: aComponent

The renderContentOn: method define the content of the modal dialog.

TBAuthentificationComponent >> renderContentOn: html

html tbsModal id: 'myAuthDialog'; with: [
html tbsModalDialog: [

html tbsModalContent: [
html tbsModalHeader: [
html tbsModalCloseIcon.
html tbsModalTitle level: 4; with: 'Authentification'

].
html tbsModalBody: [
html form: [

html text: 'Account:'.
html break.

html textInput
callback: [:value | account := value];
value: account.

html break.
html text: 'Password:'.
html break.
html passwordInput

callback: [:value | password := value];
value: password.

html break.
html break.
html tbsModalFooter: [

html tbsSubmitButton value: 'Cancel'.
html tbsSubmitButton
bePrimary;

callback: [self validate];
value: 'SignIn'.

]]]]]]

6

3.1 Authentification Component

Criticism

What do you think about the above method? Propose a refactoring using
multiple methods to better modularize the differents elements of the form.

Our Solution

TBAuthentificationComponent >> renderContentOn: html
html tbsModal

id: 'myAuthDialog';
with: [html tbsModalDialog: [

html tbsModalContent: [
self renderHeaderOn: html.
html

tbsModalBody: [
html

form: [
self renderInputAccountOn:

html.
html break.
self renderInputPasswordOn:

html.
html break.
html break.
html tbsModalFooter: [self

renderOkCancelOn: html]]]]]]

TBAuthentificationComponent >> renderHeaderOn: html
html

tbsModalHeader: [
html tbsModalCloseIcon.
html tbsModalTitle

level: 4;
with: 'Authentification']

TBAuthentificationComponent >> renderInputAccountOn: html
html text: 'Account:'.
html break.
html textInput

callback: [:value | account := value];
value: account

TBAuthentificationComponent >> renderInputPasswordOn: html
html text: 'Password:'.
html break.
html passwordInput

callback: [:value | password := value];
value: password

TBAuthentificationComponent >> renderOkCancelOn: html
renderOkCancelOn: html

7

Administration UI of TinyBlog

html tbsButton
attributeAt: 'type' put: 'button';
value: 'Cancel'.
html tbsSubmitButton

bePrimary;
callback: [self validate];
value: 'SignIn'

When the user click on the ’SignIn’ button, the validatemessage is sent and
it verifies the login/password entered by the user to access the ’admin’ part.

TBAuthentificationComponent >> validate
(self account = 'admin' and: [self password = 'password'])

ifTrue: [self alert: 'Success!']

Criticism

Authentication should not be the responsability of the modal dialog. It would
be better that it delegates this task to another model object that interact the
backend to authenticate users. You can look for another method to achieve
user authentication (using a database backend, LDAP or simply text files).

Moreover, the TBAuthentificationComponent component could display
the name of the currently connected user.

Integrate Authentication

We now integrate a link in the application that will trigger the display of the
authentication modal dialog. At the beginning of the renderContentOn:
method of TBPostsListComponent, we add the render of TBAuthentifica-
tionComponent. We also pass to this component a reference to the compo-
nent that display the posts.

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html render: (TBAuthentificationComponent from: self).
html

tbsContainer: [
html tbsRow

showGrid;
with: [self renderCategoryColumnOn: html.

self renderPostColumnOn: html]]

We define a method that displays a key logo and the ’SignIn’ link.

TBPostsListComponent >> renderSignInOn: html
html tbsGlyphIcon perform: #iconLock.
html html: '<a data-toggle="modal" href="#myAuthDialog"
class="link">SignIn'.

8

3.2 Administration of Posts

Figure 3.1 Authentication Modal Dialog.

We introduce this link below the list of categories.

TBPostsListComponent >> renderCategoryColumnOn: html
html tbsColumn

extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [
self basicRenderCategoriesOn: html.

self renderSignInOn: html]

Figure 3.1 shows what is displayed when the user click on the ’SignIn’ link.

3.2 Administration of Posts

We will create two components. The first one will be a report that contains
all posts and the second one will contain this report. The report will be au-
tomatically generated with Magritte as a Seaside component and we could
have only one component. However, we believe that sperating the adminis-
tration component from the report is a good pratice regarding for evolution.
Let’s start by the administration component.

Creating the Administration Component

TBAdminComponent inherit from TBScreenComponent to benefit from the
header and access to the blog model. It will contain the report that will cre-
ate in the following.

TBScreenComponent subclass: #TBAdminComponent
instanceVariableNames: ''
classVariableNames: ''

9

Administration UI of TinyBlog

Figure 3.2 An Empty Administration Component.

category: 'TinyBlog-Components'

We define a first testing version of the renderContentOn: method:

TBAdminComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [

html heading: 'Blog Admin'.
html horizontalRule]

We modify the validatemethod to invoke the gotoAdministrationmethod
defined in TBPostsListComponent. This latter method calls the administra-
tion component.

TBPostsListComponent >> gotoAdministration
self call: TBAdminComponent new

TBAuthentificationComponent >> validate
(self account = 'admin' and: [self password = 'password'])

ifTrue: [self component gotoAdministration]

Figure 3.2 illustrates what you obtain after logging in into your application.

10

3.2 Administration of Posts

The Report Component

The list of posts is displayed by a dynamically generated report with Magritte.
We use Magritte here to create the fonctionnalities of the administration
part of TinyBlog (list, create, edit and remove posts). For modularity pur-
pose, we create a Seaside component for the report.

TBSMagritteReport subclass: #TBPostsReport
instanceVariableNames: ''
classVariableNames: ''
category: 'TinyBlog-Components'

We add a class-side method named from: and pass it the blog object to use to
create the report. Since all posts have the same magritte descriptions, we use
one post object to retrieve them.

TBPostsReport class >> from: aBlog
| allBlogs |
allBlogs := aBlog allBlogPosts.
^ self rows: allBlogs description: allBlogs anyOne
magritteDescription

We can now, add a report to the TBAdminComponent.

TBScreenComponent subclass: #TBAdminComponent
instanceVariableNames: 'report'
classVariableNames: ''
category: 'TinyBlog-Components'

TBAdminComponent >> report
^ report

TBAdminComponent >> report: aReport
report := aReport

Since the report is a child component of TBAdminComponent, we must rede-
fine the childrenmethod as follows.

TBAdminComponent >> children
^ super children copyWith: self report

In the initializemethod of TBAdminComponent we instanciate a TBPost-
sReport and pass it the current blog object to access posts.

TBAdminComponent >> initialize
super initialize.
self report: (TBPostsReport from: self blog)

We can now display the report in the renderContentOn: method.

TBAdminComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [

html heading: 'Blog Admin'.

11

Administration UI of TinyBlog

html horizontalRule.
html render: self report]

By default, the report display all data available in posts even if some columns
are not useful. We can filter columns and only display the title, the category
and the creation date.

We add a class-side method on TBPostsReport to select columns and we
modify the from: methode to use it.

TBPostsReport class >> filteredDescriptionsFrom: aBlogPost
^ aBlogPost magritteDescription select: [:each | #(title
category date) includes: each accessor selector]

TBPostsReport class >> from: aBlog
| allBlogs |
allBlogs := aBlog allBlogPosts.
^ self rows: allBlogs description: (self
filteredDescriptionsFrom: allBlogs anyOne)

Improve the Report

Currently, the generated report is raw. There are no titles on columns, columns
order is not fixed (it can change from instance to another). We will modify
Magritte descriptions of posts to improve this.

TBPost >> descriptionTitle
<magritteDescription>
^ MAStringDescription new

label: 'Title';
priority: 100;
accessor: #title;
beRequired;
yourself

TBPost >> descriptionText
<magritteDescription>
^ MAMemoDescription new

label: 'Text';
priority: 200;
accessor: #text;
beRequired;
yourself

TBPost >> descriptionCategory
<magritteDescription>
^ MAStringDescription new

label: 'Category';
priority: 300;
accessor: #category;
yourself

12

3.2 Administration of Posts

Figure 3.3 Administration of Posts with a Report.

TBPost >> descriptionDate
<magritteDescription>
^ MADateDescription new

label: 'Date';
priority: 400;
accessor: #date;
beRequired;
yourself

TBPost >> descriptionVisible
<magritteDescription>
^ MABooleanDescription new

label: 'Visible';
priority: 500;
accessor: #visible;
beRequired;
yourself

Figure 3.3 shows what the report looks like after logging in.

Manage Posts

We now set up CRUD (Create Read Update Delete) actions to let administra-
tors manage posts. We will add a enew colum (instance of MACommandColumn)
in the report that will group all operations on posts using addCommandOn:.
This is done during the report creation and we modify the report to have ac-
cess to the blog.

13

Administration UI of TinyBlog

TBSMagritteReport subclass: #TBPostsReport
instanceVariableNames: 'report blog'
classVariableNames: ''
category: 'TinyBlog-Components'

TBSMagritteReport >> blog
^ blog

TBSMagritteReport >> blog: aTBBlog
blog := aTBBlog

TBPostsReport class >> from: aBlog
| report blogPosts |
blogPosts := aBlog allBlogPosts.
report := self rows: blogPosts description: (self

filteredDescriptionsFrom: blogPosts anyOne).
report blog: aBlog.
report addColumn: (MACommandColumn new
addCommandOn: report selector: #viewPost: text: 'View';
yourself;
addCommandOn: report selector: #editPost: text: 'Edit'; yourself;
addCommandOn: report selector: #deletePost: text: 'Delete';
yourself).

^ report

A link is displayed above the report to add a post (add). Since this link is part
of the TBPostsReport component, we redefine its renderContentOn: to
introduce this add link.

TBPostsReport >> renderContentOn: html
html tbsGlyphIcon perform: #iconPencil.
html anchor

callback: [self addPost];
with: 'Add post'.

super renderContentOn: html

Figure 3.4 shows the new version of the posts report.

Implementing CRUD Actions on Posts

Each action (Create/Read/Update/Delete) is associated to one method of the
TBPostsReport objet. We will detail the implementation of each of them
that consists in creating a customized form for each action. Indeed, if the
user wants to read a post, it does not need a ’save’ button that is only needed
when editing the post.

14

3.2 Administration of Posts

Figure 3.4 Link to Add a Post.

Adding a Post

TBPostsReport >> renderAddPostForm: aPost
^ aPost asComponent
addDecoration: (TBSMagritteFormDecoration buttons: { #save ->
'Add post' . #cancel -> 'Cancel'});
yourself

The renderAddPostFormmethod demonstrates the power of Magritte to
generate forms. In this example, the asComponentmessage sent to a model
object (instance of TBPost) directly creates a Seaside component. By adding
a decoration to this Seaside component, we can introduce the ok/cancel but-
tons.

TBPostsReport >> addPost
| post |
post := self call: (self renderAddPostForm: TBPost new).
post ifNotNil: [blog writeBlogPost: post]

The addPostmethod first displays generated form component returned by
renderAddPostForm: and then add the newly created post to the blog.

Figure 3.5 shows the form to add a post.

Edit a Post

TBPostsReport >> renderEditPostForm: aPost
^ aPost asComponent
addDecoration: (TBSMagritteFormDecoration buttons: { #save ->
'Save post' . #cancel -> 'Cancel'});
yourself

15

Administration UI of TinyBlog

Figure 3.5 Form to Add a Post.

TBPostsReport >> editPost: aPost
| post |
post := self call: (self renderEditPostForm: aPost).
post ifNotNil: [blog save]

Read a Post

TBPostsReport >> viewPost: aPost
self call: (self renderViewPostForm: aPost)

TBPostsReport >> renderViewPostForm: aPost
^ aPost asComponent
addDecoration: (TBSMagritteFormDecoration buttons: { #cancel ->
'Back' });
yourself

Remove a Post

To prevent mistakes, we introduce a modal dialog to make the user confirm
a post removal. Once removed, the list of posts displayed by the TBPostsRe-
port component should be refreshed as we will see in the following.

TBPostsReport >> deletePost: aPost
(self confirm: 'Do you want remove this post ?')
ifTrue: [blog removeBlogPost: aPost]

TBBlog >> removeBlogPost: aPost
posts remove: aPost ifAbsent: [].

16

3.2 Administration of Posts

self save.

The last method above has been added in the TBBlog class that belongs to
the model of our application. We must write a new unit test to cover this
functionnality.

TBBlogTest >> testRemoveBlogPost
self assert: blog size equals: 1.
blog removeBlogPost: blog allBlogPosts anyOne.
self assert: blog size equals: 0

Dealing with Data Update

Methods TBPostsReport >> addPost: and TBPostsReport >> deletePost:
correctly modify data in the model (and the database) but the displayed data
on screen are not correctly updated. There is a mismatch between data in
the model and data displayed by the view. The view (the report) should be
refreshed.

TBPostsReport >> refreshReport
self rows: blog allBlogPosts.
self refresh.

TBPostsReport >> addPost
| post |
post := self call: (self renderAddPostForm: TBPost new).
post ifNotNil: [
blog writeBlogPost: post.
self refreshReport

]

TBPostsReport >> deletePost: aPost
(self confirm: 'Do you want remove this post ?')
ifTrue: [blog removeBlogPost: aPost.

self refreshReport]

Now, the form works well and it also take into account contraints expressed
in Magritte descriptions such mandatory fields.

Improve the Form Skin

We will now modify Magritte descriptions to make form generators use Boot-
strap. First, we specify that the form should be rendered inside a Bootstrap
conainer.

TBPost >> descriptionContainer
<magritteContainer>
^ super descriptionContainer
componentRenderer: TBSMagritteFormRenderer;
yourself

17

Administration UI of TinyBlog

We can now, improve the style of the input fields with Bootstrap specific an-
notations.

TBPost >> descriptionTitle
<magritteDescription>
^ MAStringDescription new
label: 'Title';
priority: 100;
accessor: #title;
requiredErrorMessage: 'A blog post must have a title.';
comment: 'Please enter a title';
componentClass: TBSMagritteTextInputComponent;
beRequired;
yourself

TBPost >> descriptionText
<magritteDescription>
^ MAMemoDescription new
label: 'Text';
priority: 200;
accessor: #text;
beRequired;
requiredErrorMessage: 'A blog post must contain a text.';
comment: 'Please enter a text';
componentClass: TBSMagritteTextAreaComponent;
yourself

TBPost >> descriptionCategory
<magritteDescription>
^ MAStringDescription new
label: 'Category';
priority: 300;
accessor: #category;
comment: 'Unclassified if empty';
componentClass: TBSMagritteTextInputComponent;
yourself

TBPost >> descriptionVisible
<magritteDescription>
^ MABooleanDescription new
checkboxLabel: 'Visible';
priority: 500;
accessor: #visible;
componentClass: TBSMagritteCheckboxComponent;
beRequired;
yourself

Figure 3.6 shows what looks like a form to add a post.

18

3.3 Session Management

Figure 3.6 Bootstrap-based Generated Form to Add a Post.

3.3 Session Management

A session object is associated to each instance of Seaside application. A ses-
sion is dedicated to store informations shared and accessible by all compo-
nents of the application such as the currently authenticated user. We will
describe now how to use a session to manage log in.

The blog admin may want to switch between the private (admin) and public
(readers) part of TinyBlog.

We introduce a new subclass of WASession named TBSession. To know
wether a user is connected or not, we define a session object with an instance
variable named logged that contains a boolean value.

WASession subclass: #TBSession
instanceVariableNames: 'logged'
classVariableNames: ''
category: 'TinyBlog-Components'

TBSession >> logged
^ logged

TBSession >> logged: anObject
logged := anObject

19

Administration UI of TinyBlog

TBSession >> isLogged
^ self logged

We initialize this instance variable to false when the session is created.

TBSession >> initialize
super initialize.
self logged: false.

In the admin part of TinyBlog, we add a link to switch to the public part. We
use here the answermessage because the administration composant has
been called using the call: message.

TBAdminComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [
html heading: 'Blog Admin'.
html tbsGlyphIcon perform: #iconEyeOpen.
html anchor

callback: [self answer];
with: 'Public Area'.

html horizontalRule.
html render: self report.

]

In the public part, we modify the behavior of the application when the user
click on the link to access the admin part. This link only opens the authenti-
cation modal dialog if the user is not already connected.

TBPostsListComponent >> renderSignInOn: html
self session isLogged
ifFalse: [

html tbsGlyphIcon perform: #iconLock.
html html: '<a data-toggle="modal" href="#myAuthDialog"

class="link">SignIn']
ifTrue: [

html tbsGlyphIcon perform: #iconUser.
html anchor callback: [self gotoAdministration]; with:

'Private area']

The TBAuthentificationComponent component shoudl now update the
logged instance variable of the session if the user successfully log in as an
administrator.

TBauthentificationComponent >> validate
(self account = 'admin' and: [self password = 'password'])
ifTrue: [self session logged: true.
component gotoAdministration]

Finally, we have to configure Seaside to use session object instance of TBSes-
sion for the TinyBlog application. This is done in the initialize class-side
method of TBApplicationRootComponent.

20

3.4 Possible Enhancements

TBApplicationRootComponent class >> initialize
"self initialize"
| app |
app := WAAdmin register: self asApplicationAt: 'TinyBlog'.
app

preferenceAt: #sessionClass put: TBSession.
app

addLibrary: JQDeploymentLibrary;
addLibrary: JQUiDeploymentLibrary;
addLibrary: TBSDeploymentLibrary

Before testing, remember that this method must be executed manually TBAp-
plicationRootComponent initialize, because the class already exists.

3.4 Possible Enhancements

• Add a ”Disconnect” button

• Manage multiple administrator accounts which implies to improve
session management and store the current user login

• Manage multiple blogs

21

	Previous Week Solution
	Describe your Model Data with Magritte
	Magritte Descriptions
	Possible Enhancements

	Administration UI of TinyBlog
	Authentification Component
	Criticism
	Our Solution
	Criticism

	Integrate Authentication

	Administration of Posts
	Creating the Administration Component
	The Report Component
	Improve the Report
	Manage Posts
	Implementing CRUD Actions on Posts
	Adding a Post
	Edit a Post
	Read a Post
	Remove a Post

	Dealing with Data Update
	Improve the Form Skin

	Session Management
	Possible Enhancements

