
CHA P T E R 1
TinyBlog: Building a Web

Interface with Seaside

1.1 Previous Week Solution

You can load the solution of the previous week using the following snippet:

Gofer new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadWeek3Correction

Make sure that you Teapot server is stopped.

TBTeapotWebApp stop

1.2 A Web UI for TinyBlog with Seaside

The work presented in this exercise does not require the one on Voyage and
MongoDB.

This week, we start with a web UI dedicated to display posts to users. Next
week, we will develop another web UI for the blog owner to admnistrate the
posts. In both cases, we will define Seaside components http://www.seaside.st
which has a freely available book online here: http://book.seaside.st.

1

http://www.seaside.st
http://book.seaside.st

Figure 1.1 Start Seaside Server.

Figure 1.2 Accessing Seaside Home Page.

2

1.3 Start Seaside

1.3 Start Seaside

There are two ways to start Seaside. The first one consists in executing the
following code:

ZnZincServerAdaptor startOn: 8080.

The second one uses the graphical tool named ”Seaside Control Panel” (World
Menu>Tools>Seaside Control Panel). In the contextual menu (right clic) of
this tool, select ”add adaptor...” and add a server of type ZnZincServer-
Adaptor, then define the port number (e.g. 8080) it should run on (cf. figure
1.1). By opening a web browser on the URL http://localhost:8080, you should
see the Seaside home page as displayed on Figure 1.2.

1.4 Entry Point for TinyBlog Web UI

Create a class named TBApplicationRootComponent which will be the entry
point of the application.

WAComponent subclass: #TBApplicationRootComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

On class-side, we implement the initializemethod in the 'initializa-
tion' protocol to declare the application to Seaside. We also integrate de-
pendencies to the Bootstrap framework (CSS and JS files will be embedded in
the application).

TBApplicationRootComponent class >> initialize
"self initialize"
| app |
app := WAAdmin register: self asApplicationAt: 'TinyBlog'.
app

addLibrary: JQDeploymentLibrary;
addLibrary: JQUiDeploymentLibrary;
addLibrary: TBSDeploymentLibrary

Once declared, you should execute this method with TBApplicationRoot-
Component initialize. Indeed, class-side initializemethods are exe-
cuted at loading-time of a class but since the class already exists, we must
execute it by hand.

We also add a method named canBeRoot to specify that TBApplication-
RootComponent is not a simple Seaside component but a complete applica-
tion. This component will be automatically instantiated when a user con-
nects to the application.

TBApplicationRootComponent class >> canBeRoot
^ true

3

http://localhost:8080

TinyBlog: Building a Web Interface with Seaside

Figure 1.3 TinyBlog is a Registered Seaside Application.

Figure 1.4 Your First Seaside Web Page.

You can verify that your application is correctly registered by Seaside by
connecting to the Seaside server through your web browser, click on ”Browse
the applications installed in your image” and then see that TinyBlog appears
in the list.

1.5 First Simple Rendering

Let’s add an instance method named renderContentOn: in rendering pro-
tocol to make our application displaying something.

TBApplicationRootComponent >> renderContentOn: html
html text: 'TinyBlog'

If you open http://localhost:8080/TinyBlog in your web browser, the displayed a
web should look like to the one on figure 1.4.

4

http://localhost:8080/TinyBlog

1.6 Visual Components for TinyBlog

HeaderComponent
CategoriesComponent

PostComponent

Root
Component

TBPublicPostsListComponent

Figure 1.5 TinyBlog Components.

You can customize the web page header and declare it as HTML 5 compliant
by redefining the updateRoot: method.

TBApplicationRootComponent >> updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot beHtml5.
anHtmlRoot title: 'TinyBlog'.

The TBApplicationRootComponent component is the root component of
our application. It will not display a lot of things but will contain and display
other components. For example, a component to display posts to the blog
readers, a component to administrate the blog and its posts, ... Therefore,
we decided that the TBApplicationRootComponent component will contain
components inheriting from the abstract class named TBScreenComponent
that we will now define.

1.6 Visual Components for TinyBlog

We are now ready to define multiple visual components for our application.
The first chapters of http://book.seaside.st can help you and give more details
than this tutorial if needed.

Figure 1.5 shows the different components to develop and where they are
taking place.

5

http://book.seaside.st

TinyBlog: Building a Web Interface with Seaside

TBScreenComponent Component

All components contained in TBApplicationRootComponent will be sub-
classes of the abstract class TBScreenComponent. This class allows us to fac-
torize shared behaviors between all our components.

WAComponent subclass: #TBScreenComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

All components need to access the model of our application. Therefore, in
the ’accessing’ protocol, we add a blogmethod that returns an instance of
TBBlog (here the singleton).

TBScreenComponent >> blog
"Return the current blog in the future we will ask the
session to return the blog of the currently logged user."
^ TBBlog current

Inspect now the blog object returned by TBBlog current and verify that it
contains some posts. If it does not, execute: TBBlog current createDemo-
Post.

In the future, if you want to manage multiple blogs, you will need to modify
this method and use information stored in the active session to retrieve the
current user/blog (cf. TBSession later on).

1.7 Bootstrap for Seaside

The Bootstrap library is accessible from Seaside as we will see. If you access
the Seaside Bootstrap application in your web browser (bootstrap link in the
list of Seaside application or directly access http://localhost:8080/bootstrap)
you can see several examples as shown in figure 1.6.

If you click on the Examples link at the bottom of the web page you can see
some graphical elements and their respective code to integrate them in your
application (cf. figure 1.7).

Bootstrap

The Seaside Bootstrap library code and documentation is available here: http:
//smalltalkhub.com/#!/~TorstenBergmann/Bootstrap. There is also an online
demo here: http://pharo.pharocloud.com/bootstrap. This library is already
loaded in the PharoWeb image used in this tutorial.

6

http://localhost:8080/bootstrap
http://smalltalkhub.com/#!/~TorstenBergmann/Bootstrap
http://smalltalkhub.com/#!/~TorstenBergmann/Bootstrap
http://pharo.pharocloud.com/bootstrap

Figure 1.6 Bootstrap Library.

Figure 1.7 Bootstrap Elements and their code.

7

TinyBlog: Building a Web Interface with Seaside

1.8 Definition of TBHeaderComponent

Let’s define a component to display the top of all components in our applica-
tion.

WAComponent subclass: #TBHeaderComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

The ’rendering’ protocol contains the renderContentOn: method that dis-
plays our application header.

TBHeaderComponent >> renderContentOn: html
html tbsNavbar beDefault with: [

html tbsNavbarBrand
url: '#';
with: 'TinyBlog']

Our header is a simple navigation bar of Bootstrap (See Figure 1.8)

By default, in Bootstrap navigation bars, there is a link on tbsNavbarBrand.
Since we consider that useless in our application, we used a '#' anchor.
Now, when the user click on the title link, nothing happen.

Usually, clicking on an application title bring back the user to the web appli-
cation home page.

1.9 Header Use

It is not desirable to instantiate the TBHeaderComponent each time a com-
ponent is called. So, we add an instance variable named header in the TB-
ScreenComponent component and initializes it in its initializemethod.

WAComponent subclass: #TBScreenComponent
instanceVariableNames: 'header'
classVariableNames: ''
package: 'TinyBlog'

TBScreenComponent >> initialize
super initialize.
header := TBHeaderComponent new.

Composite-Component relationship

In Seaside, subcomponents of a component must be returned by the com-
posite when sending it the childrenmessage. So, we must define that the
TBHeaderComponent instance is a children of the TBScreenComponent com-
ponent in the Seaside component hierachy (and not in the Pharo classes hi-
erarchy). We do so by specializing the method children.

8

1.10 Using the Screen Component in our Application

Figure 1.8 TinyBlog Application with a Header Navigation Bar.

TBScreenComponent >> children
^ OrderedCollection with: header

In the renderContentOn: method (’rendering’ protocol), we can now display
the subcomponent (the header):

TBScreenComponent >> renderContentOn: html
html render: header

1.10 Using the Screen Component in our Application

Temporarily, we will directly use the TBScreenComponent while we develop
other components. So, we instantiate it in initializemethod and store it
in the instance variable main.
TBApplicationRootComponent >> initialize

super initialize.
main := TBScreenComponent new.

TBApplicationRootComponent >> renderContentOn: html
html render: main

We declare the containment relationship by returning main as children of
TBApplicationRootComponent.

9

TinyBlog: Building a Web Interface with Seaside

TBApplicationRootComponent >> children
^ { main }

If you refresh your application in a web browser, you should obtain what is
depicted on Figure 1.8.

Possible Enhancements

The blog name should be customizable using an instance vairable in the TB-
Blog class and the application header component should display this title.

1.11 List of Posts

We will now display the list of all posts - which is the primary goal in fact.
Remember that we speak about the public access to the blog here and not the
administration interface that will be developped later.

Let’s create a TBPostsListComponent inheriting from TBScreenComponent:

TBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

Add a temporary renderContentOn: method (in the ’rendering’ protocole)
to test during development (cf. Figure 1.9).

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html text: 'Blog Posts here !!!'

Add this new component in the root application component:

TBApplicationRootComponent >> initialize
super initialize.
main := TBPostsListComponent new.

Modify this method is not a good practice so we add a setter method to dy-
namically change the component to display in the future. But, we keep that
by default the TBPostsListComponent component will be displayed.

TBApplicationRootComponent >> main: aComponent
main := aComponent

1.12 A Post Component

Now e will define TBPostComponent to display the deatils of a Post. Each
post will be graphically displayed by an instance of TBPostComponent which
will show the post title, its date and its content.

10

1.12 A Post Component

Figure 1.9 TinyBlog with a First List of Posts Component.

WAComponent subclass: #TBPostComponent
instanceVariableNames: 'post'
classVariableNames: ''
package: 'TinyBlog-Components'

TBPostComponent >> initialize
super initialize.
post := TBPost new.

TBPostComponent >> title
^ post title

TBPostComponent >> text
^ post text

TBPostComponent >> date
^ post date

The renderContentOn: method defines the HTML rendering of a post.

TBPostComponent >> renderContentOn: html
html heading level: 2; with: self title.
html heading level: 6; with: self date.
html text: self text

11

TinyBlog: Building a Web Interface with Seaside

About HTML Forms

Next week, we will develop the administration web UI using Magritte and
this will demonstrate that it is not common at all to manually develop com-
ponents as we explained above. Indeed, Magritte is used to describe model
data and then offers automatic Seaside component generators. As we will
see, all the code of the previous section could be done just with:

TBPostComponent >> renderContentOn: html
html render: post asComponent

1.13 Display Posts

To display all visible posts in the database, we just need to modify the TB-
PostsListComponent >> renderContentOn: method:

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
self blog allVisibleBlogPosts do: [:p |

html render: (TBPostComponent new post: p)]

Refresh you web browser and you should get ... the following error:

Not Found /TinyBlog

1.14 Debugging Errors

By default, when an error occurs in a web application, Seaside returns an
HTML page that contains a generic message. You can change this message or
during development, you can configure Seaside to open a debugger directly
in Pharo IDE. To configure Seaside, just execute the following snippet:

(WAAdmin defaultDispatcher handlerAt: 'TinyBlog')
exceptionHandler: WADebugErrorHandler

Now, if you refresh the web page in your browser, a debugger should open on
Pharo side. If you analyze the stack, you should see that we forgot to define
the following method:

TBPostComponent >> post: aPost
post := aPost

The web application should now correctly renders and you obtains what is
shown in Figure 1.10.

1.15 Displaying the List of Posts with Bootstrap

Let’s use Bootstrap to make the list of posts more beautiful using a Bootstrap
container.

12

1.16 Displaying Posts by Category

Figure 1.10 TinyBlog with a List of Posts.

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [
self blog allVisibleBlogPosts do: [:p |

html render: (TBPostComponent new post: p)]]

Yous web application whould look like Figure 1.11.

1.16 Displaying Posts by Category

Posts are classified into categories. By default, a post is classified into a spe-
cial category named ”Unclassified” if nothing is specified.

We will now create a new component named TBCategoriesComponent to
manage the list of categories.

Category Component Definition

TBCategoriesComponent is responsible to display the list of all categories
available in the database (the model) and also to select one category. This
component should be able to communicate with the TBPostsListComponent
to pass it the currently selected category.

13

TinyBlog: Building a Web Interface with Seaside

Figure 1.11 TinyBlog with a Bootstrap List of Posts élémentaire.

WAComponent subclass: #TBCategoriesComponent
instanceVariableNames: 'categories postsList'
classVariableNames: ''
package: 'TinyBlog-Components'

TBCategoriesComponent >> categories
^ categories

TBCategoriesComponent >> categories: aCollection
categories := aCollection

TBCategoriesComponent >> postsList: aComponent
postsList := aComponent

TBCategoriesComponent >> postsList
^ postsList

On class-side, we define a creation method.

TBCategoriesComponent class >> categories: aCollectionOfCategories
postsList: aTBScreen

^ self new categories: aCollectionOfCategories; postsList:
aTBScreen

The selectCategory: method (protocol ’action’) communicates the cur-
rently selected category to the TBPostsListComponent.

14

1.17 Category Rendering

TBCategoriesComponent >> selectCategory: aCategory
postsList currentCategory: aCategory

In TBPostsListComponent, we now add an instance variable to store the
current category.

TBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: 'currentCategory'
classVariableNames: ''
package: 'TinyBlog-Components'

TBScreenComponent >> currentCategory
^ currentCategory

TBScreenComponent >> currentCategory: anObject
currentCategory := anObject

1.17 Category Rendering

We add a rendering method (’rendering’ protocol) to display one category. A
category is rendered as a link and that make this category the current one if
the user click on it.

TBCategoriesComponent >> renderCategoryLinkOn: html with: aCategory
html tbsLinkifyListGroupItem

callback: [self selectCategory: aCategory];
with: aCategory

Finally, the renderContentOn: method of the TBCategoriesComponent
is now straighforward, it just iterates over all categories and renders them
using bootstrap brushes:

TBCategoriesComponent >> renderContentOn: html
html tbsListGroup: [

html tbsListGroupItem
with: [html strong: 'Categories'].

categories do: [:cat |
self renderCategoryLinkOn: html with: cat]]

It remains to display the list of categories in the root application component
and refresh the list of displayed posts regarding the currently selected cate-
gory.

1.18 Refreshing the List of Posts

We have to modify some methods of TBPostsListComponent.

First, the readSelectedPostsmethod returns the posts to display. If the
current category is nil, it means that the user did not select any category

15

TinyBlog: Building a Web Interface with Seaside

Figure 1.12 Select a Category to Filter Posts.

yet and all visible posts of the database are displayed. If the user has selected
a category, only posts of this category are displayed.

TBPostsListComponent >> readSelectedPosts
^ self currentCategory

ifNil: [self blog allVisibleBlogPosts]
ifNotNil: [self blog allVisibleBlogPostsFromCategory: self

currentCategory]

Then, the method that renders the list of posts can be modified as follows:

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html render: (TBCategoriesComponent

categories: (self blog allCategories)
postsList: self).

html tbsContainer: [
self readSelectedPosts do: [:p |

html render: (TBPostComponent new post: p)]]

An instance of TBCategoriesComponent is rendered on the web page and
allows users to select a category (See Figure 1.12).

16

1.19 Look and Layout

1.19 Look and Layout

We will improve the layout of TBPostsListComponent using a repsonsive
design for the list of posts. It means that the CSS will adapt the component
size and placement based on the available space.

Components are displayed inside two Bootstrap containers in a row and two
columns. Column width is determined according to the resolution (viewport)
of the displaying device. The 12 columns of the Bootstrap grid are splitted
between the list of categories and list of posts. If a low resolution is used, the
list of categories will be above the list of posts (each lists will occupy 100% of
the width of the container).

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [

html tbsRow showGrid;
with: [

html tbsColumn
extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [

html render: (TBCategoriesComponent
categories: (self blog allCategories)
postsList: self)].

html tbsColumn
extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [

self readSelectedPosts do: [:p |
html render: (TBPostComponent new post: p)]]]]

You should now obtain the same look as in Figure 1.13.

When you select a category, the list of posts is correctly refreshed. However,
the current category is not highlighted. To introduce this feature, we modify
the following method:

TBCategoriesComponent >> renderCategoryLinkOn: html with: aCategory
html tbsLinkifyListGroupItem

class: 'active' if: aCategory = self postsList currentCategory
;
callback: [self selectCategory: aCategory];
with: aCategory

The application works well but you must not keep the current implementa-
tion of TBPostsListComponent >> renderContentOn:. This method is too
long and cannot be easily reused. Propose a solution.

17

TinyBlog: Building a Web Interface with Seaside

Figure 1.13 TinyBlog with a Responsive Design.

1.20 Our Solution: Small Methods

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html

tbsContainer: [
html tbsRow

showGrid;
with: [self renderCategoryColumnOn: html.

self renderPostColumnOn: html]]

TBPostsListComponent >> renderCategoryColumnOn: html
html tbsColumn

extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [self basicRenderCategoriesOn: html]

TBPostsListComponent >> basicRenderCategoriesOn: html
^ html render: (TBCategoriesComponent

categories: self blog allCategories
postsList: self)

TBPostsListComponent >> renderPostColumnOn: html
html tbsColumn

extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [self basicRenderPostsOn: html]

18

1.21 Possible Enhancements

Figure 1.14 Final TinyBlog Public UI.

TBPostsListComponent >> basicRenderPostsOn: html
^ self readSelectedPosts do: [:p |

html render: (TBPostComponent new post: p)]

We are now ready to define a administrative UI for TinyBlog.

1.21 Possible Enhancements

For example, you can:

• sort categories by name

• add a link named ’All’ in the list of categories to display all visible posts
regardless of their category

Figure 1.14 shows the final application you may have developped.

19

	TinyBlog: Building a Web Interface with Seaside
	Previous Week Solution
	A Web UI for TinyBlog with Seaside
	Start Seaside
	Entry Point for TinyBlog Web UI
	First Simple Rendering
	Visual Components for TinyBlog
	TBScreenComponent Component

	Bootstrap for Seaside
	Bootstrap

	Definition of TBHeaderComponent
	Header Use
	Composite-Component relationship

	Using the Screen Component in our Application
	Possible Enhancements

	List of Posts
	A Post Component
	About HTML Forms

	Display Posts
	Debugging Errors
	Displaying the List of Posts with Bootstrap
	Displaying Posts by Category
	Category Component Definition

	Category Rendering
	Refreshing the List of Posts
	Look and Layout
	Our Solution: Small Methods
	Possible Enhancements

