Rappelons l'équation cartésienne de quelques surfaces connues :
-
Si , est l'équation d'un plan dont un vecteur normal est le vecteur
-
est l'équation d'une sphére de centre et de rayon . En effet l'équation précédente traduit la propriété : "la distance du point de coordonnées au point est constante et égale à ", ce qui est bien la propriété caractéristique d'une sphére.
-
Dans l'espace est l'équation d'un cylindre de révolution de rayon , dont l'axe a pour équations . En effet on a la propriété : "la distance du point de coordonnées à l'axe est constante et égale à ", ce qui est bien la propriété caractéristique d'un cylindre.
Bien sûr, si le contexte indique que l'on se trouve dans le plan , l'équation
est l'équation d'un cercle.
-
Les quadriques sont des surfaces dont l'équation cartésienne est obtenue à partir d'un polynôme de degré 2 (les variables sont ). On retrouve dans cette famille les surfaces classiques : sphères, cylindres, cônes et les surfaces un peu moins classiques : paraboloïdes, hyperboloïdes, ellipsoïdes. (Voir les figures qui suivent et celles qui se trouvent dans le document référencé.) Pour l'étude de certaines de ces surfaces voir le paragraphe de cours référencé.
ellipsoïde
cylindre
hyperboloïde à une nappe
hyperboloïde à 2 nappes
paraboloïde
cône