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The ubiquitin-proteasomal system is an essential element of the protein
quality control machinery in cells. The central part of this system is the 20S
proteasome. The proteasome is a barrel-shaped multienzyme complex, con-
taining several active centers hidden at the inner surface of the hollow cylinder.
So, the regulation of the substrate entry toward the inner proteasomal surface
is a key control mechanism of the activity of this protease.

This chapter outlines the knowledge on the structure of the subunits of
the 20S proteasome, the binding and structure of some proteasomal regulators
and inducible proteasomal subunits. Therefore, this chapter imparts the knowl-
edge on proteasomal structure which is required for the understanding of the
following chapters.

I. Introduction

In order to maintain the functionality and the viability of a cell, most of the
cellular proteins are subjected to a highly regulated turnover. To realize this,
proteins that are misfolded, (oxidatively) damaged, or no longer required, have
to be recognized and removed.1–4 Removal of proteins is usually realized via
proteolytic degradation. The most important proteolytic intracellular system of
the cytosol is the proteasomal system, an evolutionarily very old and distributed
machinery that was found to be present even in many of the oldest bacteria, as
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2 JUNG AND GRUNE
well as in plants and animals. The central part of the proteasomal system is the
20S ‘‘core’’ proteasome, a large multisubunit and multicatalytic protease, as
well as several different regulators that can change the activity of the specificity
of the ‘‘core’’ particle.

In the following sections, we describe the structure and function of the 20S
proteasome and its regulators. For a better differentiation between the varia-
tions of the ‘‘proteasome,’’ the 20S ‘‘core’’ particle is always referred to as
‘‘proteasome,’’ and the other forms, according to the regulators that are attached
to that ‘‘core.’’
II. The 20S Proteasome

The 20S proteasome represents the catalytic part of the proteasomal
system, a highly regulated group of proteins that perform degradation of
damaged or misfolded proteins, regulation of their life spans,1–6 and ‘‘quality
control’’ of newly synthesized proteins7–12 that are involved in regulation of the
cell cycle,5 gene expression,13–17 immune responses,18–23 responses to (oxida-
tive) stress,24–28 and carcinogenesis.29–31 Furthermore, the nuclear protein is
involved in the maintenance of chromatin and influences DNA repair.32–34

So an evermore increasing spectrum of cellular functions are related to the
proteasomal system.

The term ‘‘20S’’ results from the sedimentation constant of the proteasome
‘‘core’’ particle.35 The mammalian form of this particle is of a cylindrical
structure of about 100�160 Å that contains four homologous rings (two
alpha (a-) and two beta (b-)rings, arranged in the sequence a-b-b-a), which
are built of seven different subunits each. The three-dimensional structure
of the large protease of several organisms has been investigated extensively via
X-ray crystallography.36–41

Two basic forms of the proteasome are known: the ancestral one that is
found in Archaea bacteria like Thermoplasma acidophilum and the evolution-
arily higher form of yeast, plants, and animals.

As the evolutionary higher form, the ancestral proteasome contains four
heptameric rings, arranged in the common a-b-b-a sequence, but in this
ancestral proteasome each ring contains seven equal subunits, so only one
a- and b-subunit are present (see Fig. 1). It is obvious that from these simple
forms of the proteasome a more complex one evolved via the divergence of
the single subunits into several homologous ones. So the evolutionary higher
form of the 20S proteasome contains 14 different subunits overall (a1–a7 and
b1–b7), showing molecular masses between 20 and 30 kDa (see Table I),
summarizing to a molecular weight of some 700 kDa. While the catalytic
centers are located in the inner b-rings, the outer a-rings of the proteasome
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FIG. 1. The structure of the archaea 20S proteasome from Thermoplasma acidophilum. This
figure shows a basic model of the archaea proteasomal structure. As shown on the left, the
proteasome contains four homologous rings in the sequence a-b-b-a. Each ring contains seven
identical subunits: the a-ring only a-, the b-ring only b-subunits, as shown in the central image. The
right panel shows the arrangement of the a-subunits in a vertical view onto an a-ring.
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are responsible for the regulation of substrate entrance to the inner proteolytic
chamber, as well as for recognition and binding of the substrates themselves. So
the a-subunits are able to change both the activity and specificity of the
proteasome. The proteolytic centers found in the inner rings are encoded by
three different b-subunits (b1, b2, and b5). Thus, due to the symmetric arrange-
ment of the different rings, the inner chamber contains 6 different proteolytic
centers, protected inside the proteasome in the evolutionary higher form of the
proteasome, but 14 in the ancestral one. The inside of the proteasome is
subdivided into two ‘‘ante chambers’’ (between the a- and b-rings) and one
single ‘‘main chamber,’’ found between the two b-rings (see Fig. 2). The ‘‘main
chamber’’ is also the location of the catalytic centers.

As the proteasome is today referred to as a proteolytic system, several
regulators are binding to the core proteasome, modulating the proteasomal
activity. Today, a set of several different proteasomal regulators are known, all
binding to the a-subunits of the outer proteasomal rings. The 11S regulator
particle, in most organisms termed ‘‘PA28’’ or ‘‘REG,’’ is formed of three
different subunits (PA28a, PA28b, and PA28g arranged in several diverse
combinations). In Trypanosoma brucei, this ATP-independent regulator is
called ‘‘PA26.’’ Another important regulator is the ATP-dependent ‘‘19S,’’ also
known as ‘‘PA700’’ regulator; its analogue in archaea is termed ‘‘PAN.’’ Several
other regulators are known, including the nuclear regulator ‘‘PA200,’’ which is
known in three different isoforms (PA200i, PA200ii, and PA200iii) and



TABLE I

HERE, THE MOLECULAR MASSES (AFTER POSTTRANSCRIPTIONAL PROCESSING, AS FOUND IN THE

ASSEMBLED WHOLE 20S ‘‘CORE’’ PROTEASOME) OF THE PROTEASOMAL SUBUNITS FROM BOTH HUMAN

AND YEAST PROTEASOME ARE LISTED, AS WELL AS THE SUBUNITS OF TWO PROTEASOMAL REGULATOR CAPS

(11S AND 19S)

20S ‘‘core’’ proteasome

Systematic S. cerevisiae Homo sapiens Mass [kDa] Literature

a1 C7/Prs2 HsPROS27/HsIota 27.5 42

a2 Y7 HsC3 25.9 43,44

a3 Y13 HsC9 29.5 45,46

a4 Pre6 HsC6/XAPC7 27.9 47,48

a5 Pup2 HsZeta 26.4 49–51

a6 Pre5 HsC2/HsPROS30 30.2 52

a7 C1/Prs1 HsC8 28.4 53–56

b1 Pre3 HsDelta/Y 25.3 (21.9) 57–59

b1i – Lmp2 23.2 (20.9) 60–63

b2 Pup1 Z 20.0 (24.5) 64–66

b2i – Mecl1 28.9 (23.8) 67,68

b3 Pup3 HsC10-II 22.9 69,70

b4 C11 / Pre1 HsC7-I 22.8 69,71

b5 Pre2 X/MB1 N/A (22.4) 71

b5i – Lmp7 30.4 (21.2) 67,72–74

b6 C5/Prs3 HsC5 26.5 (23.3) 75,76

b7 Pre4 HsN3/HsBPROS26 29.2 (24.4) 69,77,78

11S (PA28) activator cap

Systematic Other names Mass [kDa] Literature

11S subunit a REGa or PA28a 28.723 79,80

11S subunit b REGb or PA28b 27.348 20

11S subunit g REGg or PA28g 30.886 81–84

19S (PA700) regulator cap

Systematic Other names Mass [kDa] Literature

ATPase-subunits
Rpt1 S7 or p48, Mss1, Yta3, Cim5 48.633 85

Rpt2 S4 or p56Yhs4, Yta5, Mts2 49.184 86–88

Rpt3 S6b or p48, Tbp7, Yta2, Ynt1, MS73 47.336 89,90

Rpt4 S10b or p42, Sug2, Pcs1, Crl13, CADp44 44.173 91,92

Rpt5 S6a or p50, Tbp1, Yta1 49.118 93,94

Rpt6 S8 or p45, Trip1, Sug1, Cim3, Crl3, Tby1, Tbp10 45.653 95–97

Non-ATPase-subunits
Rpn1 S2 or p97, Trap2, Nas1, Hrd2, Rpd1, Mts4 100.199 98

Rpn2 S1 or p112, Sen3 105.866 99,100

Rpn3 S3 or p58, Sun2 61.005 101

(Continues)
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TABLE I (Continued)

19S (PA700) regulator cap

Systematic Other names Mass [kDa] Literature

Rpn4 Son1 or Ufd5 60.152 102–104

Rpn5 P55 or Nas5 52.904 105–107

Rpn6 S9 or p44.5 47.447 108–110

Rpn7 S10a or p44, HUMORF07 45.531 111–113

Rpn8 S12 or p40, Mov-34, Nas3 37.060 114

Rpn9 S11 or p40.5, Les1, Nas7 42.945 115–117

Rpn10 S5a or p54, ASF1, Sun1, Mcb1, Mbp1 40.736 118–120

Rpn11 S13 or Poh1, Mpr1, Par1 34.577 121–123

Rpn12 S14 or p31, Nin1, Mts3 30.004 98,124,125

Rpn15 DSS1 or SHFM1 (in human), SEM1 (in yeast) 8.146 126,127

The molecular masses in brackets represent the peptide mass before posttranscriptional processing.
According to their position (a- or b-ring) in the mature proteasome, the systematic names of the subunits were
defined. The ‘‘i’’ in the systematic names indicates an g-interferon-‘‘inducible’’ proteasomal subunit. The
molecular masses of the proteasome are according to Coux et al.,128 and the information about the regulator
caps is according to Finley et al.129 and Baumeister et al..130 The molecular weights of the single proteins were
taken from the corresponding literature and checked using the site ‘‘www.wolframalpha.com.’’ Molecular weights
from ‘‘www.wolframalpha.com’’ were very similar to the weights taken from the literature, except for the subunits
Rpt1 (57.199 kDa according to www.wolfram.com), Rpn4 (24.551 kDa), and Rpn12 (39.481 kDa).
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contributes to spermatogenesis131 and DNA repair.132 However, only PA200i
seems to bind to the proteasome, while the other two isoforms can be found in
nuclear foci133 without any proteasomal interaction.

Furthermore, PR39 and PI31, which work as cellular proteasomal inhibi-
tors, are known. PR39 is a short peptide of only 39 amino acids, first extracted
from porcine bone marrow, and functions as a noncompetitive inhibitor, both in
yeast and mammals. Its mechanism of inhibition is unique: via binding to the
a7-subunit of the proteasome, an allosteric change of the whole proteasomal
structure is induced that decreases its proteolytic activity and affects the
binding to the 19S-regulator.134 PI31, a mammalian protein first discovered
by DeMartino,135 competes with the a- and b-form of PA28 for binding of the
proteasome.136

Several other proteins interact with the proteasomal system and are able to
regulate the proteasomal proteolytic activities. The heat shock protein 90
(Hsp90) is another known cellular proteasomal regulator.137–139 Furthermore,
the proteasomal activity seems to be regulated by phosphorylation of its sub-
strates or of components of the proteasomal system itself53,95,140,141 and the
nuclear proteasome by poly-ADP-ribose.142–144

As mentioned, the proteolytic activity is localized inside the proteasome in
the main chamber. While only the subunits b1, b2, and b5 show proteolytic
activity, the others do not; furthermore, in some mammalian cells, the active

http://www.wolframalpha.com
http://www.wolframalpha.com
http://www.wolfram.com
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FIG. 2. Structures of the archaea and eukaryotic 20S proteasomes. Here, the structures of the
archaea and the eukaryotic proteasomes are compared. The upper line of images shows a simple
descriptive model (left), a highly detailed model calculated from X-ray structure analysis (middle),
and the inside of the archaea 20S proteasome (from Thermoplasma acidophilum) after removal of
several a- and b-subunits. The simple ball model shows the a-rings in pink and the b-rings in
turquoise, while the more detailed one alternates those colors in order to accentuate the single
rings. The right image shows the inner structure of the prokaryotic proteasome, subdivided into two
fore chambers between the a- and b-rings, and the main chamber formed by the two b-rings. The
bottom row of images shows the same for the eukaryotic 20S proteasome from Saccharomyces
cerevisiae. This type of proteasome contains seven different a- and b-subunits, each arranged in two
a- and b-rings. The single subunits are color coded in the same way in the simple ball model on the
left and the more complex models from X-ray structure analysis (middle and right). The right image
reveals the inner structure of the yeast 20S proteasome, showing the same subdivision into two fore
and one main chamber, as found in the archaea proteasome too.

6 JUNG AND GRUNE
subunits can be replaced by their g-interferon (IFN-g)-inducible isoforms b1i,
b2i, and b5i. However, in fact, that is not a replacement but a de novo synthesis
of new proteasomes. The presence of the IFN-g-inducible isoforms of the
proteasome results in a change of the fragment length of the product of
oligopeptides. It is surmised that the inducible proteasomal forms play a
significant role in the antigen presentation of the adaptive immune response.
Interestingly, in the thymus, a specific third variation of the b5-subunit was
recently found by Hirano, the replacement of the b5-subunit by the so-called
b5t one.145 The b-subunits of the proteasome provide their own class of
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proteases that show no evolutionary relation to other known proteases but a
very high relationship to each other, suggesting a common ancestor.36 Accord-
ing to the arrangement of the proteasomal subunits as found in the archaeic
form from T. acidophilum, the different subunits have been divided into two
classes, the a- and b-subunits.146 Normally, Eubacteria contain no 20S protea-
some. Nevertheless, in a subgroup of Eubacteria, the so-called actinobacteria,
proteasomal genes and even proteasomes were found. In those actinobacteria,
HslVU (also known as ClpQY), an ATP-dependent hexameric protease147,148

that shows structural similarities to the b-subunits of the 20S proteasome, was
identified. It is a dimer containing both the proteasome-related protease HsllV
and HslU, an ATPase.149

The proteasome is not the only proteolytic system of the cell, but one of the
most important ones. Among the others are the lysosomal system,150,151 contain-
ing many different cathepsins,152–154 and the calpains associated with the
cytoskeleton. While the main task of the lysosomal system includes the degra-
dation of intracellular organelles, the proteasomal system is the most important
one regarding the recognition and degradation of (damaged) proteins. It is
assumed that between 70% and 90%155,156 of the misfolded, (oxidatively)
damaged, or no longer needed proteins are degraded via the proteasomal
pathway. While the pure degradation of dysfunctional or misfolded proteins
occurs in an ATP-independent way, the regulatory degradation of functional
proteins is ATP-dependent and,moreover, the proteins targeted for degradation
have to be labeled with a chain of ubiquitin molecules (polyubiquitination).

In mammalian cells, the amount of proteasome can be up to 1% of the
whole protein pool (in liver and kidney cells).157 The proteasome can be found
both in the cytosolic and in the nuclear compartment of a cell, and can also be
bound to the endoplasmic reticulum (ER) as well as being in association with
the cytoskeleton.158 The mammalian form of the 20S proteasome was first
discovered and isolated from human red blood cells by Harris in 1968 and
termed ‘‘cylindrin’’159,160 following the shape of the large protein complex.
Other scientists have termed it ‘‘macroxyproteinase,’’161–163 ‘‘hollow cylinder’’
protein,164,165 ‘‘multicatalytic proteinase complex,’’166–170 or ‘‘prosome.’’158,171

Today, the term ‘‘proteasome’’ is used the most often.
A. The Proteasomal a-Subunits

Both recognition and access of the substrate into the inner proteolytic

chamber of the proteasome is regulated by the a-rings. After contact with a
substrate, an (oxidatively) damaged/misfolded, and (partly) defolded protein, a
conformational change of the a-rings is induced that virtually ‘‘unlocks’’ the
gate they form to control and regulate substrate entrance to the inner chamber.
That gate is formed by the N-terminal ends of the three subunits a2, a3, and
a4.

172 The N-terminal ends of those three subunits are pointing in the direction
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of the proteasomal symmetric axis and block mechanically the entrance to the
proteolytic centers formed by the two b-rings. Incubation of isolated protea-
somes with low concentrations of sodium dodecylsulfate (SDS), an agent that
induces a slight defolding of the proteasomal subunits, resulted in a significant
increase of proteolytic activity, caused by an opening of the proteasomal gate
that facilitates substrate entrance128 (Fig. 3).

Similar effects could be induced by repeated freezing–thawing cycles as
well as under conditions of low ionic strength. Those experimental results
suggested an involvement of structural changes of the a-subunits that regulate
proteasomal substrate entrance. A further possibility of substrate entrance
modulation is the binding of a regulatory subunit (like 11S, 19S, or PA200) to
the proteasomal a-rings. Such a binding can increase proteasomal activity up to
10-fold173,174 and induce a change in substrate specificity, which is induced by
the maximal opening of the substrate channel of the proteasome via a confor-
mational rearrangement of the blocking N-terminal ends of some a-subunits.
a5
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a1a2
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a7

a1a2
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FIG. 3. Gating of the eukaryotic 20S proteasome. This image shows a structural rearrangement
of the a-rings of the yeast 20S proteasome without and after activation. Activation can be induced
by binding of a substrate protein, short oligopeptides, or regulating proteins (in this case, Blm10;
see the text). After activation, the substrate accessibility of the proteasome increases, mainly due to
an opening of the gate that is formed by the N-terminal structures of the a-subunits. Please note the
massive reorganization of the N-terminus of a3 (yellow). After activation, the a-rings open a channel
of about 13 Å to the inner proteolytic centers. The small icon in the middle shows the point of view
(arrow) from which the reader is looking at the depicted a-rings.
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The ‘‘activation’’ of the proteasome seems to be mediated via the binding of the
a-rings to hydrophobic amino acids (normally buried inside the correctly
folded/native form of a globular and water-soluble proteins) that are exposed
by (oxidatively) damaged or unfolded/misfolded proteins; that binding induces
the conformational change that results in an opening of the proteasomal gate.175

The proteasomal gate shows a maximal diameter of about 13 Å (archaea
proteasome) in its maximal opened state: this is sufficient to enable the en-
trance of a defolded substrate protein, usually represented by a single chain of
amino acids. The individual N-terminal ends of the single gating subunits
reveal unique three-dimensional structures that are essential for the gating of
the proteasome. Some of the involved structures are highly conserved in
eukaryotic cells. The so-called YDR-motif (Tyr8-Asp9-Arg10) can be found in
every single a-subunit, as well as in archaea and eukaryotic cells, and may be
working as a joint, bending the gating structures in order to modulate protea-
somal activities.172 The most important part seems to be played by the
a3 subunit: a3DN mutant of yeast, which miss the last nine amino acids
(GSRRYDSRT) that are found in the wild type, and show a permanently
increased proteasomal activity that cannot be modulated/increased any further
by SDS-exposure of the proteasome.172 However, the characteristics of
substrate binding or degradation are not or significantly less affected. In
contrast, the a7DNmutant did not reveal any significant increase in proteolytic
activity, while the a3a7DN mutant induced significantly more activity in casein
degradation than either of the single deletions.176 So, especially the YDR
motive of the a3-subunits seems to be essential for stabilization of the gate,
involving allosteric effects that affect also the subunits a2 and a4.

Interestingly, in the archaea proteasome (from T. acidophilum), where the
a-rings are built of seven identical subunits, some oligopeptides revealed the
ability to induce a conformational change in the N-termini of the a-subunits
resulting in an opening of the gate. In this conformational change, the last 13
amino acids are involved as well as a slight turn (about 4�) of every single
subunit.

The same gate-opening reconfiguration can be induced by the attachment
of PAN in its ATP-bound confirmation, as cryo-electron microscopic experi-
ments have revealed.177 The oligopeptides mentioned above (seven or more
amino acid residues) are the different C-terminal sequences of PAN sub-
units178 that are able to bind the gaps between the single a-subunits of the
proteasome. Those residues are termed the HbXYmotifs. After binding of PAN
or an oligopeptide, the gate of the archaea proteasome ‘‘opens’’ by a structural
rearrangement. The diameter of the ‘‘closed’’ gate is usually about 9 Å and thus
notably smaller than the channel directing to the inner proteolytic chamber of
the proteasome with a diameter of about 23 Å. As mentioned earlier, after
‘‘activation’’ the diameter of the open gate increases to about 13–20 Å. A similar
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mechanism was revealed in studies of the PA26-binding: the gate structures
were opened by the C-termini of PA26 and a so-called activation loop that
induces both a movement of the N-terminal structures of the a-rings and a faint
turning of every a-subunit.177

Usually, the 20S proteasome is found in the cell in its ‘‘inactive’’ state but
can be ‘‘activated’’ by regulators, unfolded proteins, or proteasomal substrates.
Furthermore, it has to be discriminated between the proteasomal peptidase
and protease activities: while ‘‘peptidase activities’’ represent the degradation
of small oligopeptides and are almost independent of the gate status, ‘‘protease
activities’’ stand for the degradation of a whole unfolded protein and are
considerably dependent on the gate status. This suggests that the gating
a-subunits have only little interaction with small peptide fragments but a key
function in the degradation of whole protein substrates.
B. The Proteasomal b-Subunits

In contrast to the gating/regulating function of the proteasomal a-units, the

main task of the b-units is the proteolytic process itself.
The ancient archaea proteasome contains seven identical b-subunits in one

ring and thus seven proteolytic centers, too. In contrast, further developed
yeast and the mammalian proteasomes contain only three different centers per
b-subunit ring, localized on the subunits b1, b2, and b5. In 2002, Unno et al.
proposed a novel N-terminal nucleophile hydrolase activity,40,41 formed by the
Thr8 residue of subunit b7, after the analysis of bovine proteasomes’ X-ray
crystal structure. The proteolytic centers of the active subunits are found in the
inner chamber of the 20S proteasome complex. Figure 4 shows the catalytic
centers of the archaea proteasome. Each of the three known proteolytic
subunits shows a different preference for substrate binding:
� b1 Shows a peptidyl–glutamyl–peptide hydrolysing activity (caspase-like
activity, cleaving after acidic amino acids, thus also termed as ‘‘post-
glutamyl-peptide hydrolytic’’ activity).179

� b2 Shows a trypsin-like activity, cleaving after basic amino acids.
� b5 Shows a chymotrypsin-like activity and cleaves after neutral amino
acids.180
In all three active subunits, the active center is formed by the N-terminus
(Thr1) of the corresponding proteasomal b-subunits (Fig. 5). Noteworthy, the
proteases that show similar specificities like trypsin181 or chymotrypsin182

are serine-proteases. Typical products of proteasomal degradation are oligo-
peptides with lengths between 2 and 35 amino acids.183 That distribution
shows three different maxima: 2–3, 8–10, and 20–30 amino acids, while the
average length is about 8–12 residues.86
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inhibitor i.

β-Ring of the archaea proteasome
binding calpain

Calpain inhibitor i

Calpain
inhibitor i

FIG. 4. Active centers of the archaea 20S proteasome. Here, the b-ring of the archaea
proteasome from Archaeoglobus fulgidus is shown. The small icon in the upper left corner shows
the angle of view (arrow) and the part of the proteasome the reader is looking at, seeing the side of
the b-ring facing the proteolytic main chamber of the proteasome. The single identical b-subunits
of the displayed archaea b-ring are color coded, and the small orange molecule bound to every
single one is the calpain inhibitor i. The right image shows a single b-subunit in complex with
calpain inhibitor i (orange).
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Besides Thr1, the amino residues Asp17 and Lys33 turned out to be essential
for the functionality of all three active centers. At the same time, the residues
Ser129/166/169, which are localized surrounding Thr1, seem to be important for
stabilization of the three-dimensional structure of each active center (Fig. 6).
Possible allosteric effects between the single active centers are still discussed:
Some experimental outcome suggests such interactions,184 but most of the pro-
teasomal inhibitors bind to the b5-subunit, resulting only in a significant reduction
of the associated specificity (chymotrypsin like), but no change in the activities of
the other two proteolytic subunits. In contradiction to these experimental results
is the ‘‘bite and chew’’ model from Kisselev185 that proposes indeed allosteric
interactions between the active subunits; according to this model, substrates for
the b5-subunit like Suc-LLVY-MNA or Suc-FLF-MNA significantly increased
the activity of b1 (caspase-like). In the same way, inhibiting substrates for one
activity indirectly had an effect on the other two activities. Thus, Kisselev con-
cluded a cyclic mechanism in the degradation of a protein substrate. The
chymotrypsin-like activity of b5 initiates degradation of an amino acid chain and
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triggers further cleavage by the b1-subunit (showing peptidyl–glutamyl–peptide
hydrolysing activity); during b1-mediated substrate cleavage (‘‘chewing’’), b5
activity is inhibited. If no further cleavage by b1 is possible, then b5 is ‘‘reacti-
vated,’’ starting the cycle over and over again. According to Kisselev’s model,
allosteric interactions between the active subunits are essential for substrate
degradation.185 However, knockout mutants of yeast revealed that active protea-
somal subunits are important for cellular survival and functionality (cell division)
and showed that the proteolytic capacities of the single subunits vary in their
importance: b5>>b2>b1. This results in the fact that double knockout mutants
b1/b5 and b1/b2 are still viable, while b2/b5 are not.

186,187
C. Intracellular Assembly of the 20S Proteasome

The first step in proteasome assembly is the association of the a-ring. In

order to prevent any unspecific oligomerization of the a-subunits, this process
is guided by different chaperones. These chaperones are called proteasome
assembly chaperones (PAC). Until now four different forms of these chaper-
ones are known: PAC 1–4 (in humans)188–190 and their equivalents from yeast,
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FIG. 6. Amino acids in the active center of the eukaryotic 20S proteasome. The small icon in
the upper left corner shows the part of the whole 20S proteasome (from Saccharomyces cerevisiae)
that is shown in the enlarged image: the two b-rings. Some of the subunits are removed in order to
expose the main chamber with its six proteolytic centers overall. The upper b-ring still contains b1
(red), b2 (yellow), and b5 (blue), and the lower ring only b50 (blue). Every single of those active
subunits binds a bortezomib molecule (purple) to its active center. The two bortezomib molecules
that are bound to the removed active subunits of the lower b-ring (b10 and b20) are shown in orange.
Here, the b5-subunit of a 20S proteasome (from S. cerevisiae) is shown. The left part of the image
shows the whole structure, and the right part the active center and the most important amino acids
that are involved. The center binds a single molecule of bortezomib.
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termed proteasome biogenesis-associated protein (Pba) 1–4.191,192 However,
such a terminology is not uniquely used and so sometimes in yeast, Pba1 is
called POC1, Pba2 POC2 or PAC2, Pba3 PAC3 or Dmp2188 or POC3, and
finally Pba4 Dmp1 or POC4. These chaperones form two different heterodi-
mers to become active: the first one is PAC1–PAC2 in humans and Pba1–Pba2
(POC1–POC2) in yeast; the second one is PAC3–PAC4 in humans and Pba3–
Pba4 (Dmp1–Dmp2) in yeast.189 PAC1–PAC2 are involved in the assembly of
the a-ring. The PAC1–PAC2 heterodimer first binds to the subunits a5 and a7,
followed by stepwise incorporation of a6 and a1 (both bind on the a7 side),
then followed by a2 (binds to a1), a3 (binds a2), and a4 (binds both to a3 and
a5), driven by mutual interactions.193 This assembly is supplemented by the
PAC3–PAC4 heterodimer, attaching to the a2-subunit.

After this, the PAC3–PAC4 heterodimer (in yeast Pba3–Pba4/Dmp1–
Dmp2) provides incorporation of the single b-subunits one after the other. In
a first step, PAC3–PAC4 binds and incorporates first b2 and then b3. In further
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steps, the subunits b4, b5, b6, b1, and b7
145 are incorporated. At this stage, the

active b-subunits (b1, b2, and b5) are still in their inactive form (prob1, prob2,
and prob5), due to a later removed prosequence. b6 and b7 are not proteolytic
active, but nevertheless contain a prosequence. The PAC3–PAC4 heterodimer
detaches from the complex after b3 is incorporated. This ends up with the
formation of a so-called half proteasome built with one a- and one b-ring. The
corresponding intermediates of a complete a-ring binding different b-subunits
including the so-called half-mer (a complete a-ring ring with all b-subunits incor-
porated except b7) have already been identified, suggesting the sequential charac-
teristic of that assembly.194 Another identified intermediate is the so-called 13S
(built with a complete a-ring and the subunits b2, b3, and b4).195 Until now, the
exact order of b-subunit incorporation in yeast is still unclear. In yeast, Ump1 binds
after b2, b3, and b4 are already recruited in the complete a-ring, while in humans
it binds the a-ring together with b2.

145

So, two of those ‘‘half proteasomes’’ finally assemble at the holoproteasome,
the functional 20S ‘‘core’’ particle. In yeast, assembly of the holoproteasome is
mediated by the proteasome maturation factor Ump1196,197 (also called ‘‘pro-
teassemblin’’193,198 or ‘‘POMP’’,199–201 for proteasome maturation protein). The
human form of Ump1 is termed ‘‘hUmp1.’’ One Ump1 binds to every single
‘‘half proteasome.’’ After the last b-subunit (b7) is incorporated into the ‘‘half-
mer,’’ the dimerization of two ‘‘half mers’’ is induced. That whole complex (also
termed ‘‘16S intermediate’’) now contains a complete a- and b-ring, as well as
one Ump1 and the PAC1–PAC2 heterodimer. In this process, the extended
C-terminus of b7 from one ‘‘half proteasome’’ interacts between the b1- and
b2-subunit of the opposite b-ring from the other ‘‘half proteasome.’’ Incorpo-
ration of b7 seems to be a rate-limiting step in this process, since overexpression
of b7 massively increases 16S dimerization.202 Assembly of the holoproteasome
is followed by an autocatalytic ‘‘activation’’ of the proteolytic b-subunits: Their
N-terminal ends are degraded (setting free the N-terminal Thr1 on b1, b2, and
b3), followed by degradation of both Ump1 molecules inside the proteolytic
chamber as the first substrate of the functional 20S holoproteasome. After this,
the two attached PAC1–PAC2 heterodimers are degraded, too.

Another protein involved in 16S dimerization is Hsc73: one is bound to each
16S, and detaches after assembly of both 16S. Since intracellular immunoloca-
lization revealed a stable binding of Ump1 to the outer membrane of the ER,199

it is supposed that the complete a-ring is bound to Ump1 and is not released
before all of the b-subunits are recruited. Asmuch as 75–88% of the proteasome
maturation intermediates were colocalized with the ER membrane, while
formation of the holoproteasome seems to take place in the cytosol of the cell.203

Interestingly, in contrast, assembly of the archaea proteasome (from
T. acidophilum), which only contains a single type of both a- and b-subunits,
is independent of any chaperone proteins: a coexpression of both subunits in
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Escherichia coli resulted in the formation of functional archaea 20S protea-
somes.36,146 This auto-assembly is enabled by characteristic loops (L-loops) of
the a-subunits that can assemble with other a-subunits. The b-subunits have no
such structure and, thus, their assembly depends of a complete a-ring that
functions as an assembly ‘‘platform.’’204
D. Modeling of the 20S Proteasomal Proteolysis

In order to describe 20S proteasomal (with and without regulators) degra-

dation, several mathematical models have been developed. For the prediction
of antigens presented by the immune system, a model describing cleavage sites
and fragment length of a given oligopeptide may be useful. For this purpose,
two main strategies exist: one concentrates on the predictions of the fragments
generated during proteolytic degradation of a substrate, though the results may
become inaccurate if the produced fragments overlap205; the other strategy is
focused on the prediction of potential cleavage sites, returning the probability
of the occurrence of a specific fragment.206 In this model, the produced
fragments are normally determined by a potential cleavage site between two
amino acids with respect to one or two residues neighboring that locus on each
side. In contrast, other models try to simulate the process of degradation from a
mechanistic point of view, considering kinetic rates in order to calculate the
velocity of proteolytic degradation for a given substrate protein. The computed
results have to be proven in an empiric way, while the models are based on
‘‘learning sets’’ that result from the fragments occurring after degradation of a
known protein.
III. Regulation of the 20S Proteasome

In order to prevent uncontrolled and unregulated proteolytic degradation
in a cell, the proteasomal degradation has to be carefully regulated. Therefore,
during evolution, a set of regulators has developed that are able to control both
recognition and degradation of proteasomal substrates. The regulated entrance
into the proteolytic inner chamber of the 20S core proteasome is realized via
the gating a-rings that may be ‘‘activated’’ by binding to the exposed hydro-
phobic stretches of oxidatively damaged proteins. Usually, these hydrophobic
structures are buried inside the soluble proteins, but after (oxidative) modifi-
cation, these structures may be exposed, whereas native and correctly folded
proteins have to be targeted (via polyubiquitination) for proteasomal degrada-
tion. The most important regulator for the recognition of ubiquitin-labeled
proteins is the so-called 19S regulator complex that cooperates with another
cellular machinery, the ubiquitination system.
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A. The 19S Regulator

The 19S regulator, also known as ‘‘PA700’’ or ‘‘proteasome activator

700 kDa’’207–210 is built up of two main structures: a ring-shaped base that
binds to the a-rings of the 20S ‘‘core’’ proteasome and a lid that recognizes and
binds polyubiquitinated proteins, thus regulating substrate entrance to the 20S
proteasome.

The base ring contains at least 10 different subunits (Rpt1–Rpt6, Rpn1,
Rpn2, Rpn10, and Rpn13). The lid contains nine subunits (Rpn3, Rpn5–Rpn9,
Rpn11, Rpn12, and Rpn15) that are also termed ‘‘DSS1’’ or ‘‘SHFM1’’ in
humans, and ‘‘SEM1’’ in yeast. The Rpt-subunits show an ATPase activity,
while the Rpn-subunits do not. Furthermore, Rpn11 in the lid contains a
Zn2þ-dependent proteolytic center that is able to catalyze the proteolytic
degradation of polyubiquitin chains that label native substrate proteins for
degradation; after this, the ubiquitin molecules are released for reuse of the
polyubiquitination machinery.

The Rpt2 (in humans also called S4 or p56, and in yeast YTA5 or mts2),
Rpt3 (human form termed as S6, Tbp7, or P48, and the yeast form as YTA2),
and Rpt5 (S60 or Tbp1 in humans, and YTA1 in yeast) subunits of the base ring
play a role in gate opening of the attached a-subunits of the 20S proteasome,211

while Rpn10 (S5a or Mbp1 in humans, and SUN1,MCB1, or pus1 in yeast) and
Rpn13 (ADRM1 in humans, and DAQ1 in yeast) function as polyubiquitin
receptors.211 The main role of the small protein ubiquitin is the labeling of
native proteins for proteasomal degradation, in order to regulate their intra-
cellular amount of life span.

One 19S regulator might attach to each of the a-rings of the 20S ‘‘core’’
proteasome, forming a large particle of about 2 MDa,212 termed the ‘‘26S
proteasome.’’ In a mechanism that is known from other regulators of the
proteasome, the 19S particle makes substrate access to the ‘‘core’’ particle
easier by ‘‘opening’’ the gating a-rings. It has been shown in yeast that the
Rpt2-ATPase of the base ring is involved in this process.86 Until now, no data
from X-ray crystallography of the 19S regulator are available211 and only some
of the interactions of the single subunits are known213; thus, in Fig. 7, only a
hypothetical structure of the 19S regulator cap can be displayed.
B. The Immunoproteasome

A special inducible form of the 20S proteasome is called the immunopro-

teasome (i20S). The i20S proteasome can be induced by IFN-g, and on the site
of the subunits b1, b2, and b5 their inducible equivalents (b1i, b2i, and b5i) are
located.140,214–219 To achieve this, proteasomes have to be synthetized de
novo.220,221 Further inducers are both tumor necrosis factor alpha (TNF-
a)222,223 and lipopolysaccharides.224 In general, the three inducible b-subunits
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FIG. 7. A model of the structure of the eukaryotic 26S proteasome. This image shows a model
of a eukaryotic 20S ‘‘core’’ proteasome (from Saccharomyces cerevisiae) bound to two 19S regulator
caps. Since there are no data from X-ray structure analysis for the 19S regulator, this is just a model
showing the very basic shape of 19S that is divided into a ‘‘base’’-ring containing six subunits binding
the a-ring of the 20S ‘‘core’’ proteasome and a ‘‘lid’’ containing nine subunits, responsible for
recognition, binding, and unfolding (in an ATP-dependent way) of polyubiquitinated substrates,
feeding them into the 20S proteasome for terminal degradation. Overall, the 19S regulator cap
contains some 18 different subunits (see Table I), 10 for the whole ‘‘base’’ structure and nine for the
‘‘lid.’’
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are homologs of the constitutive ones and are indicated by an additional ‘‘i’’
(i20S); other names found in the literature for those inducible proteasomal
subunits are low-molecular-weight protein 2 (LMP2, for b1i), multicatalytic
endopeptidase-like-complex-1 (MELC1, for b2i), and LMP7 (for for b5i).

225–227

At the same time, the so-called 11S regulator (also known as PA28, PA26, or
REG) is induced by the same cellular signal cascades. The major function of
the immunoproteasome is the production of a specific short oligopeptide
product pattern that can be presented by the major histocompatibility complex
class I (MHC-I) on the cell’s surface in immune response. Typical products of
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the immunoproteasome are short protein fragments, made up of about 8–10
amino acids that are optimized for MHC-I-presentation. Since i20S induction
mainly depends on the amount of cytokines that are released in the tissue, it is
suggested that immunoproteasomes mainly release new self-determinants that
prevent autoimmune response in the surrounding uninfected cells.228 On the
other hand, Yewdell proposed in 2005228 that the main functions of i20S are not
the generation of MHC-I-presented antigens and that further research in this
field is needed.

INF-g induces both the proteasome maturation factor Ump1 and the
inducible forms of the proteolytic proteasomal subunits; paradoxically, the
mRNA of Ump1 is increased, while the amount of free Ump1 decreases (as
found in HeLa cells) and the half-life of that protein is reduced from 82 to only
21 min.229 It turns out that this is caused by a massively increased proteasome
formation that enhanced degradation of Ump1, which is the first proteasomal
substrate (see above) after assembly of the holoproteasome. Considering
this, the turnover of Ump1 can be used as an indicator for the formation rate
of functional proteasomes. The formation of the immunoproteasome is turned
into a highly dynamic process due to two main factors. The first one is the
fact that the processed b5i has a higher affinity to Ump1 than the propeptide
prob5i, which generates a higher rate of i20S formation compared to the one of
c20S (this fact suggests two different binding sites).229 The second factor is the
much shorter half-life of i20S (about 27 h) compared to c20S (about 8–12
days).230–232 The interplay of these two factors allows both a very quick expres-
sion and a fast removal of i20S. Seven days of continuous stimulation can
completely replace c20S by i20S,21 while after a shorter stimulus the ratio of
c20S/i20S decreases.

However, after expression of the inducible subunits, the de novo assembled
proteasomes do not always contain all six inducible catalytic subunits; many
forms are found that only show between 1 and 5 of the inducible bi-subunits,
while the others are the constitutive ones. Whether there is a special need or
function for such intermediate proteasomes is still unclear. Nevertheless, both
b5i and Ump1 seem to be essential for the formation of i20S: cells that do not
express b5i or Ump1 are not able to form i20S, even after IFN-g treatment.

In Ump1-knockdown cells, proteasomal-mediated proteolysis decreases
rapidly to 60% after 24 h and to 40% after 48 h,229 while the overall amount
of cellular proteasomes is reduced significantly.233 In the same way, an over-
expression of Ump1 increases the proteasomal-mediated cellular proteoly-
sis.200 The number of bi-subunits increases constantly over time in muscle
tissue of aged rats compared to young ones (a three- to sixfold increase was
found). The same results were detected for neurons, astrocytes, and endothe-
lial cells in the hippocampus of elderly humans (about 70 years of age) com-
pared to a younger control group (about 42 years of age).234 Considering this,
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the inducible b-subunits seem to accumulate over time in cells and tissues that
normally only contain the ‘‘housekeeping’’ form of the proteasome (c20S) and
especially in cells prone to postmitotic aging, as neurons and muscle cells.
C. The Thymus-Specific Proteasome
(Thymoproteasome)

Another specific proteasomal subunit is the so-called b5t, which was first

discovered in mice, exclusively in cortical thymic epithelial cells (cTECs).235 b5t
plays an important role in the positive selection of thymocytes.236 Accordingly, the
term ‘‘thymoproteasome’’ was suggested for the ‘‘b1i, b2i, and b5t-configuration’’
of the 20S proteasome. It turns out that the thymoproteasome is responsible for
the generation of short antigenic oligopeptides presented on the cell surface,
resulting in the positive selection of CD8þ T-cells. The self-peptide production
is dependent on the thymoproteasome and is essential for the development of an
immune-competent repertoire of CD8þ T-cells.237

Genomic analyses of the gene coding b5t (PSMB11) was performed by
Sutoh et al..238 It turned out that teleost fish have two functional copies of
PSMB11 (PSMB11a and PSMB11b), while chickens, turkeys, and zebra fish
lost PSMB11, expressing neither thymo- nor immunoproteasomes. In mam-
mals, reptiles, amphibians, and teleost fishes, PSMB11 is located close to
PSMB5, which codes b5 of the constitutive 20S proteasome. These results
suggest that PSMB11 may originate from the older PSMB5 by tandem dupli-
cation. b5t shows a close relation to both b5 and b5i and was found to be
incorporated in about 20% of the thymic proteasomes.

In proteasomes containing b5t, the inducible subunits b1i and b2i are
preferentially incorporated compared to the constitutive ones b1 and b2. Anti-
gens that are presented by the MHC-I239–241 complexes show hydrophobic
C-termini that function as an anchor in MHC-I binding242 and that result from
the characteristics of b5t-mediated cleavage. In contrast to b5 and b5i, the
proteolytic center of b5t contains hydrophobic amino residues that reduce the
chymotrypsin-like proteasomal activity by 60–70%, without any effect on
the other two activities.235 The maximal velocity of proteolysis, as well as the
Michaelis constant, is lower in b5t compared to both b5 and b5i. The result is a
significantly decreased amount of oligopeptides released with a hydrophobic
C-terminus that are preferably incorporated in the binding grove of MHC-I.
Thus, b5t seems to reduce the amount of MHC-I-presentable antigens.

The result is both a lowered production and presentation of MHC-I-bound
oligopeptides and thus a decreased interaction of cTECs with the ab-T-cell
antigen receptor, which causes a higher probability of positive selection of
those cells.235,236
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b5i-deficient mouse models revealed an imperfect development of CD8þ

T-cells and a resulting decrease of those cells by about 80%,243 suggesting that
b5i may enhance the selection of CD8þ T-cells. However, the amount of
antigen-loaded MHC-I molecules presented on the surface of b5t-deficient
cells did not change. The lysosomal cathepsin S is a necessary factor in antigen
presentation in most cells, but in contrast, this task is performed by cathepsin L
in thymus cortical epithelial cells. After deletion of cathepsin L in those cells,
the selection of CD4þ was reduced without any influence on the amount of
MHC-II. The presentation of different antigenic oligopeptides by MHC-I (in
CD8þ cells mediated by the proteasome) and MHC-II (in CD4þ cells medi-
ated by the lysosomal system/cathepsin L) decides the positive or negative
selection of mature T-cells. T-cells showing a high affinity to self-antigens are
sorted out, otherwise causing autoimmune reactions. In contrast, T-cells with a
low affinity to MHC molecules will maturate, while mediocre affinity usually
triggers positive selection.
D. The 11S Regulator

The 11S regulator of the proteasome, also called ‘‘PA28,’’ ‘‘REG,’’ or ‘‘PA26’’

(in T. brucei), has different structures. Three different subunits of the 11S
activator are known: PA28a, PA28b, and PA28g. There are hexameric or
heptameric structures described and, in addition to that, under defined condi-
tions, various homo- or heteropolymerization products of the individual sub-
units are formed. Results indicated first that the 11S regulator has an a3b3
structure, where both subunits were arranged alternatively.244,245 However,
later, an a3b4 complex was detected. This particle interestingly contains a b–b
dimer, but no a-subunit dimer.246 There seem to exist several 11S forms in
cells, as PA28a3b3, PA28a4b3, PA28a3b4 (in each case with alternating arrange-
ment of the a- and b-subunits), and PA28g7.

247 If PA28a and PA28b subunits
are mixed in vitro in a ratio of a to b of 1.2, both PAa3b4 and PAa4b3 can be
detected.246 The PA28a-heptamer is instable, but can be formed in vitro,
whereas the PA28b-heptamer cannot. However, PA28g forms a stable
heptamer.248,249

The base diameter of the 11S regulator is some 90 Å and the complex is
about 60 Å in height; with a central cavity 20–30 Å wide. In general, the various
11S regulators are able to bind to the outer a-rings of the proteasome and
change substrate degradation properties. However, like the degradation by the
20S proteasome, the degradation of substrates by the 11S–20S complex is ATP-
independent (Fig. 8), suggesting that only unfolded proteins are substrates.247

11S binding increases the b2-catalyzed cleavage about 10-fold and the b1- and
b5-catalyzed cleavages by about 50-fold.250,251 The PA28g-isoform activates
only b2.

248 Binding of PA28 changes the conformation of the proteasome,
thereby making it more efficient in proteolytic activity.252
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FIG. 8. The immunoproteasome and the 11S regulator. Here, the structure of the so-called
immunoproteasome, a eukaryotic 20S ‘‘core’’ proteasome capped with two 11S regulators, is shown
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and b-ring of the 20S proteasome (a half proteasome). Please note that the gate of the ‘‘core’’
proteasome is ‘‘opened’’ and a channel through the regulator cap (arrow above the structure)
enables substrate access to the main chamber of 20S and the proteolytic centers within.
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Interestingly, PA28a and PA28b are located only in the cytosol, but all three
PA28 isoforms can be found in the nucleus.253,254 The PA28g isoform activates
only b2.

248 The PA28a,b regulators seem to be involved in the generation of
oligopeptides in the immune response (see also immunoproteasome). So,
PA28b knockout animals have a reduced immune function.255 Interestingly,
PA28g-knockout animals show malfunctions in cell cycle regulation and apo-
ptosis,255,256 due to the role of PA28g7 in the degradation of nuclear lysine-free
proteins.257,258
E. The Hybrid Proteasome (PA28–20S–PA700)

The hybrid proteasome, thus termed by Tanahashi et al.,259 contains both a

PA700 (19S) and a PA28 (11S) regulator cap. Each of the regulators is bound to
either end of the 20S proteasome. Tanahashi et al. determined the relative
amounts of the different possible hybrid proteasomes (see Fig. 9). The 11S
regulator is present in its hexameric form (ab)3 and the two different hepta-
meric versions (ab)3a and (ab)3b in hybrid proteasomes, whereas the
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FIG. 9. The relative amount of proteasome types as found in the cytosol of HeLa cells. Here,
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heptameric PA28g (g7) is not. Via immunoprecipitation it is possible to isolate
the hybrid proteasomal forms that can be induced in cells in an IFN-g-
mediated way.260 ATP is needed for attachment of PA28 to the 20S core
proteasome, as well as in the ATP-dependent protein degradation of the
PA28–20S–PA700 complex.259 Considering the ATP-dependence of the regu-
lator ‘‘core’’ particle attachment, the formation of PA28–20S–PA700 is very
similar to that of PA700–20S–PA700 (the 26S proteasome).

Though the exact cellular function of those hybrid proteasomes is still
unknown, it might be possible that the proteolytic specificities of the core
proteasome bound to 19S change by binding of an additional PA28 regulator,260

causing a different set of oligopeptide products produced during proteolytic
degradation of a substrate. The proteolytic activity of 26S was found to be
higher than that shown by the hybrid forms. However, a cooperation of
immunoproteasome and hybrid forms of the proteasome in antigen processing
might be possible, since both proteasomal forms can be induced via IFN-g. So,
it was suggested that most of the proteolysis required for MHC-I antigen
presentation is performed via the 26S proteasome or the so-called hybrid
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proteasomes (PA28–20S–19S). Since the PA28 activator cap is not able to
mediate the degradation of natively folded proteins, it appears that the sub-
strate protein has to be unfolded first in an ATP-dependent way that is
mediated by the 19S-regulator cap.

Whether the short oligopeptide products that are released after 19S–20S-
mediated proteolytic degradation are further processed by another protea-
some, perhaps containing a PA28 regulator protein, is still unclear. According
to the ‘‘molecular coupling hypothesis’’, a hybrid proteasome is attached to a
TAP1–TAP2 complex (TAP, transporter associated with antigen processing)
protein channel in the ER membrane via the PA28 regulator cap. So, a poly-
ubiquitinated and natively folded antigenic protein is recognized and unfolded
by the 19S regulator cap and then guided into the core proteasome (in this
special case, an immunoproteasome), where it is degraded. Fragment lengths
as well as the fragment characteristics are influenced by the PA28 proteasomal
regulator cap that delivers antigenic oligopeptide fragments directly into the
TAP1–TAP2 protein complex. The advantage of such a direct transport is the
protection of the fragments from cytosolic proteases. Further processing of the
antigenic fragments (like N-terminal trimming) is done via ER-resident pro-
teases as endoplasmic reticulum aminopeptidase associated with antigen pro-
cessing and endoplasmic reticulum aminopeptidase 1 and 2. This proposed
mechanism was inspired by the identification of the highly conserved ‘‘KEKE’’-
motifs at the distal side of PA28 that are not involved in binding or activation of
the 20S ‘‘core’’ proteasome. KEKE motifs may be involved in protein–protein
interactions and have been found in four subunits of the 20S proteasome and
five subunits of the 19S proteasomal regulator cap. Furthermore, they have
been found in both HSP90 and calnexin, two other proteins that play a role in
epitope loading of MHC-I proteins. Another hypothesis gaining from those
results suggests that heat shock proteins may be involved in immune re-
sponse.261,262 However, this idea has been disproven in 2006 using the SIIN-
FEKL epitope of ovalbumin: experiments revealed that there is no promotion
of its MHC-I presentation.263
F. The PA200 Regulator Protein

The PA200 proteasomal activator cap is exclusively found in the nucleus of

mammalian cells. The yeast homolog (from Saccharomyces cerevisiae), known
as Blm10, shows a sequence homology of about 20%264 to the mammalian
form. First investigations of the PA200 structure and its binding to the 20S core
proteasome were done using electron microscopy. Three-dimensional recon-
structions of the gained data showed a slightly asymmetric dome structure
(100 Å in diameter, as the 20S proteasomal a-ring, and about 60 Å in high)
with an inner cavity that sits on one or both the a-rings like a cap265 (Fig. 10).
Differently from the other proteasomal regulators, PA200 is a monomeric
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FIG. 10. The Blm10 regulator cap. The left part of the image shows a 20S ‘‘core’’ proteasome
(from Saccharomyces cerevisiae) with two Blm10 regulator caps (the light blue dome-shaped
structure on both ends of 20S) attached. The right part of the image shows a more detailed
cross-section of a single Blm10 cap and one a- and b-ring of the corresponding 20S proteasome.
The cross-section shows both an activated a-ring opening a channel to the inside of the proteasome
and a channel in the Blm10 regulator cap (arrow on the right image) that enables substrate access,
significantly increasing substrate turnover.
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structure of about 200 kDa. PA200 binding to the 20S core proteasome is
mediated by a structure that contains several HEAT-repeats and that contacts
almost every a-subunit, except a7. The yeast form (Blm10) binds to every single
a-subunit.264 Normally, the entrance to the inner proteolytic chamber is reg-
ulated by the N-termini of the a-subunits. This suggests that the PA200
regulator changes its structure in a way that enables enhanced substrate access
to the ‘‘core’’ particle. This rearrangement turns out to be the main mechanism
of activation by reconstructions from electron microscopic data.265

In the same way as the 11S regulator, PA200 increases the degradation of
small protein fragments and releases fluorescent degradation products, but is
not able to process a natively folded protein. A ratio of 20S/PA200–20S/PA200–
20S–PA200 of 50:40:10 was measured using electron microscopic investigation
of isolated proteasomes and PA200–proteasome complexes from bovine tes-
tes.265 About the function of PA200, the current knowledge is very limited.
Interestingly, experiments of gene deletion or overexpression did not induce
significant change in the phenotype.264 Only a role of PA200 in DNA repair
after exposure to ionizing radiation or oxidizing agents seems to be ensured.132
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So, in response to ionizing radiation, PA200 is expressed and accumulates in its
hybrid form on chromatin.133 After PA200 knockdown, cells showed genomic
instabilities and reduced survival. The genome-stabilizing functions of PA200
seem to be a result of its ability to enhance the proteasomal b1-mediated
peptidyl—glutamyl-like proteolysis.266 However, deletion of Blm10 in the
yeast A364a-strain did not result in any effect on growth or viability after
treatment of the cells with DNA-damaging agents like bleomycin or phleomy-
cin.264 Furthermore, no increased susceptibility of A364a to UV- or g-irradia-
tion, methyl methane sulfonate, camptothecin, or hydroxyurea could be
detected. However, overexpression of Blm10 resulted in a reduced growth,
but this can be an effect of increased binding to the 20S proteasome, thus
detracting activity from other cellular functions of that protease. The presence
of PA200 in the nucleus enables the formation of another proteasome complex:
in yeast, Blm10 is able to form PA200–20S–19S.132,267 After HeLa treatment
with ionizing irradiation, immunoprecipitation revealed a coprecipitation of
PA200 in complex with 20S–19S, even if the amounts of 20S and 19S were not
increased. Thus, irradiation seems to induce the formation of the PA200–20S–
19S complex in a DNA-damage response-mediated way.266 Twenty-four hours
after irradiation, the PA200–20S–19S complex showed an accumulation on
chromatin. The trypsin-like (mediated by the b2-subunit of the proteasome)
activity associated with the chromatin showed a sixfold increase, and the
peptidyl–glutamyl-like one (mediated by the b1-subunit) up to a 19-fold in-
crease, accompanied by a five- to eightfold increased amount of 20S on the
chromatin.268 That accumulation seems to be independent of ATM (a PI3-like
kinase),269,270 which starts the signal cascade after irradiation-mediated stress
via triggering of the tumor suppressor p53.271,272 One important function of
PA200 might be an enhancement of the b1 activity of the proteasome that is
essential for the cellular survival after exposure to ionizing irradiation.266
IV. Conclusion

As shown in this chapter, the proteasomal system is complex and far from
being well understood. We referred in this chapter only to the principal
structures of the proteasome, not describing the interaction with the ubiquiti-
nation machinery, or other proteasomal regulators; it becomes clear that one
can hardly imagine any aspect of cellular life not related to the function of the
ubiquitin–proteasome system. The importance of this system is further under-
lined by the fact that it appeared early in evolution, as in Archae bacteria, and
evolved to a more complex structure with new regulators and specialized
subunits. The evolution toward function and organ-specific isoforms under-
lines this chapter.
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In the further chapters of this book, the functions of the proteasome will be
described in more detail, and the role of the proteasome in a selection of
diseases and cellular stress situations will be highlighted, always on the basis
of the principal structural features of the proteasome described above.
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