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Recent studies from several laboratories have provided
evidence that cell surface complex carbohydrates play key
roles in the regulation of developmentally relevant signal
transduction events. The demonstration that Fringe, a known
modifier of Notch function, is a fucose-specific
N-acetylglucosaminyltransferase provided strong evidence that
the Notch signaling pathway could be regulated by alterations
of O-fucose structures. More recently, the demonstration that
O-fucose modification of Cripto is essential for Nodal-
dependent signaling provides further evidence of a role for
glycosylation in signal transduction. These and other examples
provide a new paradigm for the regulation of signal
transduction events by glycosylation.
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Abbreviations 
CFC Cripto, FRL-1, Cryptic
CSL CBF1, Suppressor of hairless, Lag-1
EGF epidermal growth factor
GlcNAc N-acetylglucosamine 
GPI glycosyl phosphatidyl inositol
O-FucT-1 GDP-fucose: protein O-fucosyltransferase 1 
TGFββ transforming growth factor β
uPA urinary-type plasminogen activator

Introduction
The discovery of the complexity and diversity of complex
carbohydrates on the cell surface led researchers over
30 years ago to hypothesize that glycoconjugates play roles
in communication between cells and in the transfer of
information from the outside of the cell to the inside [1].
As this type of communication is essential for numerous
stages of development, specific carbohydrate modifications
were proposed to play roles in particular biological events
at the cell surface. Over the years, numerous observations
have supported this concept. Early on, many of the 
stage-specific embryonic antigens (e.g. SSEA-1, SSEA-3,
SSEA-4, HNK-1) were demonstrated to be specific 
carbohydrate structures [2]. For instance, SSEA-1 is the
Lewis x oligosaccharide, SSEA-3 and SSEA-4 are glycolipids
of the globo series, and HNK-1 is a sulfated glycan. The
expression of unique glycan structures at specific stages
implied a particular function for that structure. The
demonstration that the presence or absence of polysialic
acid alters homotypic interactions of the neural cell adhesion
molecule (NCAM) added further support [2]. More recently,

the demonstration of embryonic lethality resulting from
the genetic ablation of several glycosyltransferases has
revealed that particular carbohydrate structures are essential
for development to proceed past certain stages [3].
Nonetheless, with the exception of NCAM, identifying
examples of particular carbohydrate structures on specific
proteins mediating such effects was, for many years, 
elusive. Recent work has begun to identify some of these
molecules. The first examples came with the demonstration
that cell surface heparan sulfate proteoglycans play an
essential role in Wnt, hedgehog, FGF (fibroblast growth
factor) and TGFβ (transforming growth factor β) super-
family pathways. More recently, O-fucose modifications of
epidermal growth factor (EGF)-like repeats have been
shown to modulate Notch, TGFβ family (Nodal) and urinary-
type plasminogen activator (uPA) signal transduction.
Several excellent recent reviews have been written 
concerning the role of heparan sulfate proteoglycans in
development [4–6] and thus will not be considered further
here. This review will focus on the recent studies of the
O-fucose modifications of EGF repeats of Notch, Cripto
and uPA.

Involvement of O-fucose modifications of EGF
repeats in signal transduction
O-linked carbohydrate modifications of EGF repeats
Fucose O-linked to serine or threonine was first observed
over 25 years ago as amino acid fucosides isolated from
human urine [7]. The first protein reported to bear O-fucose
was uPA [8], quickly followed by tissue-type plasminogen
activator and several clotting factors (factors VI, IX and XII)
[9]. Comparison of the sequences surrounding the sites of
O-fucose modification on these proteins showed the fucose to
be localized to a putative consensus sequence within EGF
repeats. EGF repeats are small (approximately 40 amino
acid) protein motifs originally observed in epidermal growth
factor. They are defined by the presence of six conserved
cysteine residues that form three disulfide bonds (Figure 1;
[10]). EGF repeats occur in dozens of cell surface and
secreted proteins, and are known to play roles in
protein–protein interactions. The O-fucose modification
occurs between the second and third conserved cysteines of
the putative consensus sequence C2XXGGS/TC3 [9].
Proteins predicted to be modified with O-fucose based on
the presence of this consensus sequence have been demon-
strated to bear the modification [11•–14•], indicating that 
it can be used to make accurate predictions about whether 
a protein will bear O-fucose (Table 1). Recent work has 
suggested that the originally proposed consensus site is too
narrow and that O-fucose modifications occur more broadly
than predicted [14•]. As a result, a broader consensus site,
C2X3−5S/TC3, has recently been proposed.
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The enzyme responsible for the addition of O-fucose to
EGF repeats, GDP-fucose: protein O-fucosyltransferase 1
(O-FucT-1), has been identified and cloned [15,16].
O-FucT-1 appears to be a type II membrane glycoprotein
like most glycosyltransferases involved in the addition of
sugars to proteins. It will not fucosylate synthetic peptides
containing the consensus sequence for O-fucose addition,
but requires a properly folded EGF repeat containing the
consensus sequence (Figure 1; [15,17]). Homologs have
been identified in species from Caenorhabditis elegans to
humans, an expression pattern that is consistent with the
distribution of proteins containing EGF repeats.

The structure of the EGF repeat from factor VII with and
without the O-fucose has been determined using NMR
[18]. Although the O-fucose presents a significant epitope
on one face of the EGF repeat, no major conformational
change in the polypeptide structure was observed. Thus,
alterations in function due to changes in glycosylation are
more likely to result from direct interactions with the 
carbohydrates or from steric blocking of a protein–protein
interaction by the carbohydrate.

Early work on the function of O-fucose modifications indi-
cated a role in modulating receptor−ligand interactions.
Binding of uPA to the uPA receptor results in the activation
of several signaling cascades within cells [19]. The EGF
repeat of uPA is necessary and sufficient to activate the
uPA receptor. Interestingly, removal of the O-fucose from
the EGF repeat (either chemically or by synthesis in 

bacteria in which fucosylation does not occur) abrogates
uPA receptor activation, although it has no effect on the
binding of the EGF repeat to the receptor [20]. The mech-
anism by which the O-fucose activates the receptor is
unknown, but these results demonstrate that the presence
or absence of a simple sugar on an EGF repeat can 
regulate a signal transduction event.

Fringe is an O-fucose: ββ1,3-N-acetylglucosaminyl-
transferase that modulates Notch signaling
Another example of how a signaling event can be regulated
by alterations of carbohydrate structures on EGF repeats has
been revealed in the Notch pathway. Notch is a large cell 
surface receptor protein that plays an essential role in 
numerous developmental events (for recent reviews on
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Figure 1

EGF repeat modified with the O-fucose tetrasaccharide. 
A representation of an EGF repeat (based on EGF1 from factor VII
[18]) modified with the O-fucose tetrasaccharide is shown. The
conserved cysteines of the EGF repeat are in yellow and are
numbered, and the disulfide bonds between them (C1–C3, C2–C4 and
C5–C6) are shown. The serine (shown) or threonine modified with 
O-fucose is in blue, and the other amino acids between C2 and C3 are
shown as X. The number of Xs can vary between 3 and 5 [14•]. The
enzymes responsible for the addition of each saccharide are indicated: 
O-FucT-1 [15–17], Fringe [30•• ,37•• ], β4GalT1 [39•] and either
α2,3SiaT (shown) or α2,6SiaT [11• ,30•• ]. Adapted from [30•• ].
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Table 1

O-fucose-modified proteins*.

Proteins known to be modified with O-fucose.

Blood clotting/dissolution
Urokinase (uPA) [8]
Tissue-type plasminogen activator (tPA) [46]
Desmodus (bat) salivary plasminogen activator [47]
Factor VII [48]
Factor IX [49]
Factor XII [50]

Notch signaling
Notch [11�,30��]
Delta [14�]
Serrate [14�]
Jagged [14�]

TGF� signaling
Cripto [12�,13�]

Other
Fetal antigen-1/Delta-like protein (FA1/DLK) [51]
Proteins predicted to be modified with O-fucose based on the
presence of the consensus sequence (C-X-X-G-G-S/T-C).

  Slit
  Crumbs
  Cryptic
  LDL receptor-related protein (LRP)
  Acrogranin/epithelin
  Brevican (PCCB)
  Neurocan (PGCN)
  Agrin
  Hepatocyte growth factor activator
  One-eyed pinhead
  FRL-1
  Versican (PGCV)
  Multimerin
  Fibrillin
  Fibropellin
  Perlecan (PGBM)

*Proteins that have been identified to contain O-fucose are listed
along with proteins that contain the consensus sequence for
O-fucose addition and may be modified. Proteins containing a
consensus sequence within an EGF module were found by
searching the sequence databases Swiss-Prot and PIR
(Protein Information Resource) at the MOTIF web site
(www.motif.genome.ad.jp) using the query pattern C-x-x-G-G-[ST]-C.
Note that searches with the broader consensus site (C2X3�5S/TC3)
are not informative due to the large number of proteins identified.
Adapted from [52].



Notch, see [21,22]). A variety of human diseases are caused
by defects in Notch signaling, including T-cell leukemias,
CADASIL, spondylocostal dysostosis and Alagille syndrome
[23–25]. The extracellular domain of Notch is composed
largely of tandem EGF repeats (36 in Drosophila Notch and
mammalian Notch1 and Notch2), several of which contain
consensus sites for O-fucose modification [11•]. The recent
finding of a broader consensus site for O-fucose modification
has greatly expanded the number of potential sites on Notch
[14•]. Notch activation is initiated by ligand binding.
Interestingly, Notch ligands (Delta and Serrate/Jagged) are
also transmembrane proteins. Thus, Notch activation
requires the expression of a ligand on an adjacent cell
(Figure 2). Binding of ligand initiates a proteolytic event 
catalyzed by TACE, a member of the ADAMS family of
metalloproteases, whereby the extracellular domain of Notch
is released from the membrane. This is followed by another
proteolytic event, just inside the membrane, catalyzed by
γ-secretase. After the cytoplasmic domain of Notch is
released from the membrane, it translocates to the nucleus,
where it binds to members of the CSL (CBF1, Suppressor of
hairless, Lag-1) family of transcriptional regulators, resulting
in the activation of several downstream genes.

Notch activation can be regulated at several points within
the signaling pathway. The Fringe protein was identified
in Drosophila as a modulator of Notch activation, capable of
potentiating signaling from Delta while inhibiting signaling
from Serrate/Jagged (reviewed in [26,27]; Figure 2).
Mutations in fringe result in defects in the proper develop-
ment of several tissues in Drosophila, including wings, eyes
and legs. Three Fringe homologs exist in mammals
(Lunatic fringe, Manic fringe and Radical fringe) that are
all capable of complementing fringe mutants in Drosophila
[28,29]. Cell-based signaling assays have confirmed that
Lunatic and Manic fringe can inhibit Jagged1-dependent
Notch activation and stimulate Delta1-dependent activa-
tion [30••,31•,32•]. Genetic ablation of Lunatic fringe in
mice results in fusion of somites, skeletal defects and peri-
natal death [33,34], although no obvious phenotype was
observed in mice lacking Radical fringe [35,36]. No data are
yet available on phenotypes of Manic fringe knockouts.
Thus, Fringe carries out a variety of essential develop-
mental functions by modulating Notch activity.

Fringe modulates Notch activity by altering the O-fucose
carbohydrate structures on EGF repeats. Fringe is an
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Figure 2

Fringe modulates ligand-mediated activation
of Notch (for a recent review on Notch
activation, see [22]). Notch activation
proceeds through five steps. (i) Notch in the
signal-receiving cell becomes activated upon
binding to Notch ligands (Delta and
Serrate/Jagged) expressed on the cell surface
of the sending cell. (ii) Ligand binding
stimulates proteolytic cleavage of the
extracellular domain of Notch at site 2 (S2)
catalyzed by TACE. (iii) Release of the
extracellular domain of Notch stimulates
intramembranous cleavage at site 3 (S3)
catalyzed by γ-secretase. (iv) γ-Secretase
cleavage releases the intracellular domain
from the membrane as a soluble protein in the
cytoplasm. (v) The Notch intracellular domain
translocates to the nucleus, where it interacts
with the CSL family of transcriptional
regulators to activate transcription. (vi) Ligand
expressed in the same cell as Notch can
inhibit activation through cell autonomous
inhibition [53,54]. Fringe (Fng) modifies
O-fucose residues on both Notch [30•• ,37•• ]
and Notch ligands [14•], resulting in
potentiation of signaling from Delta (Fng+) or
inhibition of signaling from Serrate/Jagged
(Fng−). O-fucose is represented by a triangle;
β1,3-GlcNAc added by Fringe is a square;
β1,4-galactose is a circle; α2,3/6-sialic acid is
a diamond. The brackets indicate the
carbohydrates that are added in response to
Fringe action. The addition of the sialic acid is
not necessary for Fringe to exert its effects on
Jagged1-dependent Notch activation and,
thus, is presented as +/− [39•]. Adapted
from [30•• ].
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O-fucose: β1,3-N-acetylglucosaminyltransferase, responsible
for the addition of β-linked N-acetylglucosamine (GlcNAc)
residues to the 3′-hydroxyl groups of O-fucose on EGF
repeats (Figure 1; [30••,37••,38••]). The N-acetylgluco-
saminyltransferase activity is essential for Fringe to be able
to mediate its effects on Notch signaling. The addition of
GlcNAc to O-fucose by Fringe is believed to be a Golgi
event [37••] and (in mammals) is followed by the addition
of a β1,4-linked galactose and an α2,3-linked sialic acid
(Figure 1; [30••]). Recent work has shown that Fringe-
mediated inhibition of Jagged1-dependent Notch
activation requires the addition of the β1,4-galactose but
not the sialic acid [39•]. The mechanism by which the
altered carbohydrate structure changes the ability of Notch
to respond to its ligands is an area of active research.
Several models have been proposed (see [40•] for details),
including direct modulation of ligand binding and alter-
ation of the cell autonomous inhibition of Notch by ligands
(Figure 2). The recent demonstration that Fringe can

modify O-fucose residues on the ligands as well as on
Notch [14•] has raised the interesting possibility that
Fringe could function through the modification of either or
both the ligand and receptor. Studies are currently under-
way to examine these possibilities.

O-fucose modification of Cripto is essential for
Nodal signaling
Nodal is a member of the TGFβ superfamily and plays an
important role in establishing polarity in the vertebrate
embryo (for recent reviews, see [41,42]). Nodal mutants in
mice and zebrafish (Nodal homologs cyclops and squint)
show severe defects in mesoderm formation and left/right
axis determination. Nodal is believed to activate type I and
type II activin-like receptors, leading to phosphorylation-
induced accumulation of Smads in the nucleus (Figure 3).
Once in the nucleus, the Smads associate with nuclear
transcription factors of the FAST (FoxH1) family, resulting
in the altered transcription of several downstream genes.
Nodal signaling is regulated at several levels and recent
work has identified the EGF-CFC family of proteins
(including mammalian Cripto and Cryptic, zebrafish one-
eyed pinhead and Xenopus FRL-1) as essential cofactors for
the activation of the activin-like receptors by Nodal (for a
recent review, see [43]). The EGF-CFC proteins are small,
GPI (glycosyl phosphatidyl inositol)-anchored cell surface
proteins that contain a truncated EGF repeat (lacking
amino acids between the first and second conserved 
cysteines) and another cysteine-rich domain termed CFC
(for Cripto, FRL-1, Cryptic). The EGF repeat in each of
the EGF-CFC family members contains an O-fucose con-
sensus site and recent work has demonstrated that the site
is modified with O-fucose in both human Cripto [12•] and
mouse Cripto [13•]. Interestingly, mutation of the 
modified threonine to alanine prevents O-fucosylation and
inhibits Cripto function in both cell-based signaling assays
and Xenopus oocytes [12•,13•]. Thus, Nodal signaling is
dependent on the presence of fucosylated EGF-CFC 
proteins. Recent work in the Shen [13•] laboratory has
demonstrated that Cripto can activate Nodal signaling
either bound to the cell surface or as a soluble factor, and
that physical association with Nodal appears to be depen-
dent on the presence of the fucose. These results raise the
interesting possibility that O-fucosylation could represent
an additional level of regulation of Nodal signaling.

Conclusions
The past decade has seen increasing numbers of examples
of cell surface carbohydrates that play roles in signal 
transduction events. As hypothesized decades ago, the
complexity of carbohydrates found on the cell surface
argues for an informational role. Numerous developmentally
relevant signaling pathways are affected by proteoglycans
and the recent demonstration of the importance of
O-fucose modifications in Notch and Cripto/Nodal signaling
suggests that a new era of uncovering the involvement of
glycans in signaling is beginning. Several other proteins
involved in a variety of developmental and/or signaling
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Figure 3

Modification of Cripto with O-fucose is essential for Nodal-dependent
signaling (for a review of the Nodal signaling pathway, see [41–43]).
Nodal signaling proceeds through four steps. (i) The interaction of
Nodal with Cripto is dependent on the presence of O-fucose on Cripto
[12• ,13•]. Cripto can be either linked to the cell surface through a GPI
anchor (as shown) or soluble [13•]. (ii) The Cripto−Nodal complex
activates the type I and type II activin-like receptors. (iii) The activated
receptors phosphorylate cytoplasmic Smad2 (or Smad3). (iv)
Phosphorylation of the Smad proteins results in nuclear accumulation,
where they interact with the FAST (FoxH1) family of transcriptional
regulators and activate transcription. O-fucose is represented by a
triangle, the EGF repeat by a red circle and the CFC domain by a
hexagon. Adapted from [41].
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events are predicted to be modified with O-fucose (see
Table 1). In addition, EGF repeats are also modified with
O-glucose at consensus sites between the first and second
conserved cysteines [9]. Many of the predicted O-glucose
sites on the Notch receptor are evolutionarily conserved,
suggesting these modifications will also play an important
role in Notch signaling. Another form of O-fucose has
recently been mapped to a consensus site on thrombo-
spondin type 1 repeats [44]. Interestingly, the O-fucose site
on thrombospondin type 1 repeats sits in the midst of a
known heparan-sulfate-binding domain, suggesting this
modification may modulate interactions at this site [45].
These and other examples suggest we are just scratching
the surface of the role of glycosylation in the regulation of
signal transduction.

Update
Recent work has shown that Brainiac is also a β1,3-N-
acetylglucosaminyltransferase, apparently modifying
β-linked mannose or galactose on glycosphingolipids 
[55]. Brainiac exhibits sequence similarities with both
Drosophila and mammalian Fringes, and Brainiac mutants
show some resemblance to Notch mutants, indicating that
Brainiac also may have an affect on the Notch pathway.
The relationship between alterations in glycosphingolipid
structure and Notch is not yet clear.
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