
Programmation générique [mo]
Support de cours

Karine Zampieri, Stéphane Rivière

Unisciel algoprog Version 30 mai 2018

Table des matières

1 Programmation générique 2

2 Modèle de modules 3
2.1 Mise en oeuvre d’un modèle procédural 3
2.2 Exemple : Modèle de fonctions . 4
2.3 Exemple : Modèle de procédures . 5

3 Modèle de classes 6
3.1 Mise en oeuvre d’un modèle de classes 6
3.2 Définition externe des méthodes . 7
3.3 Exemples : Modèles de classes . 8

4 Compléments 9
4.1 Surcharge et spécialisation . 9

C++ - Programmation générique

Mots-Clés Modèles �
Requis Axiomatique impérative, Axiomatique objet �
Difficulté • ◦ ◦ (1 h) �

Introduction
Ce module décrit la programmation générique appelée aussi polymorphisme para-
métrique.

1

Unisciel algoprog – mo00cours-texte, May 30, 2018 2

1 Programmation générique

Programmation générique
(generic programming en anglais) Permet de décrire des comportements identiques, indé-
pendamment du type de données. On parle aussi de polymorphisme paramétrique.

Remarque
De tels modèles de traitements/classes génériques s’appellent aussi traitements/-
classes génériques ou patrons (chablons) ou encore modèles (template an anglais).

Exemple : Modèle de fonctions
L’algorithme max(x,y) est un modèle de fonctions (et non une fonction) : c’est le même
modèle paramétré par un type T qui dispose de l’opérateur de comparaison <. De même,
l’algorithme swap(x,y) est un modèle de procédures : c’est la même procédure paramétré
par un type T des paramètres de la procédure.

Exemple : Modèle de classes
En C++, le vector est un modèle de classes (et non une classe) : c’est le même modèle
que l’on y stocke des char (vector<char>), des int (vector<int>) ou tout autre objet.

Conclusion
Les modèles de modules/classes sont un moyen condensé d’écrire plein de modules/-
classes potentiels à la fois. L’apport des « génériques » permet également de rendre le
code plus robuste et simplifie grandement la programmation.

Unisciel algoprog – mo00cours-texte, May 30, 2018 3

2 Modèle de modules

2.1 Mise en oeuvre d’un modèle procédural

Définition d’un modèle procédural
La définition des modèles de procédure/fonction ne génère en elle-même aucun code :
c’est une description de codes potentiels.

Définition d’un modèle procédural

template<typename T, ... int N>
//... ici figure la déclaration/définition d’un module
//... où T apparait comme type et N comme constante

Explication
Déclare une famille de modules.

Instanciation d’un modèle procédural
Le code n’est produit que lorsque tous les paramètres du modèle ont un type
spécifique, c.-à-d. qu’il faut fournir des valeurs pour tous les paramètres (au moins
ceux qui n’ont pas de valeur par défaut). On appelle cette opération, une instanciation
du modèle.

Instanciation implicite
Dans le cas des modèles de procédure/fonction, l’instanciation peut être implicite
lorsque le contexte permet au compilateur de décider de l’instance de modèle à choisir.

Instanciation explicite
L’instanciation explicite peut être utile dans les cas où le contexte (dans les modèles
de procédure/fonction) n’est pas suffisamment clair pour choisir.

Unisciel algoprog – mo00cours-texte, May 30, 2018 4

2.2 Exemple : Modèle de fonctions

Le modèle de déclaration d’une fonction max typique est :

template<typename T>
T max(const T& a,const T& b)
{

return (a < b ? b : a);
}

La fonction max est ensuite instanciée automatiquement lors de ses appels, par exemple :

//Instanciation automatique de la fonction template max
int main(int, char **)
{
int i, j;
double a, b;
...
cout << max(i,j) << endl;
cout << max(a,b) << endl;
return 0;

}

La ligne cout<<max(i,j)<<endl; créée la version :

int max(const int&, const int&)

à partir du template|, alors que \lstinlinecout max(a,b) endl ;@ créée la version :

double max(const double&, const double&)

Mais il n’y a pas de conversion automatiques entre les types. Ainsi l’instruction suivante
est ambigüe :

cout<<max(i,b)<<endl;

Il faut écrire une instanciation explicite afin d’avoir un type T identique. Par exemple
pour un double :

cout<<max(double(i) b); // première solution
cout<<max<double>(i,b); // autre solution

Unisciel algoprog – mo00cours-texte, May 30, 2018 5

2.3 Exemple : Modèle de procédures

Le modèle de procédures permuter lequel permute le contenu de ses deux paramètres
s’écrit :

template<typename T>
void permuter(T& a, T& b)
{
T tmp(a);
a = b;
b = tmp;

}

On peut alors utiliser ce modèle avec tout type/classe pour lequel le constructeur de
recopie et l’opérateur d’affectation (=) sont définis.

int i1(2), i2(4);
permuter(i1, i2);

Par le contexte, il est clair qu’il s’agit de l’instance permuter<int>. De même, le code
suivant est licite :

vector<double> v1, v2;
permuter(v1, v2);

Tout comme celui-ci :

string s1("ca marche"), s2("coucou");
permuter(s1,s2);

Unisciel algoprog – mo00cours-texte, May 30, 2018 6

3 Modèle de classes

3.1 Mise en oeuvre d’un modèle de classes

Déclaration d’un modèle de classes

template<typename T1, ...>
class K { ... };

Explication
Déclare le modèle de classe K de paramètres (=noms génériques) de type Ti. Les types
Ti (paramètres du modèle) peuvent être utilisés dans la définition qui suit comme tout
autre type.

C++ : Mot-clé typename
Ce nouveau mot typename a été ajouté par la norme afin de souligner tout-type. Il remplace
le mot-clé class (des anciennes versions du C++)

Valeur par défaut d’un modèle de classe
Il est possible de définir des types par défaut avec la même contrainte que pour les
paramètres de fonction/procédure : les valeurs par défaut doivent être placées en dernier.

Instanciation d’un modèle de classes
Contrairement aux modèles de fonctions/procédures, l’instanciation des classes n’est pas
automatique. Il faut la faire explicitement.

Unisciel algoprog – mo00cours-texte, May 30, 2018 7

3.2 Définition externe des méthodes

Définition externe des méthodes

template<typename T1, ...>
K<T2,...>::methode(...)
{
...

}

Explication
Définit la methode du modèle de classes K.

Attention
Il est absolument nécessaire d’ajouter les paramètres du modèle (les types gé-
nériques) au nom de la classe pour bien spécifier que dans cette définition c’est la classe
qui est en modèle et non la méthode.

Unisciel algoprog – mo00cours-texte, May 30, 2018 8

3.3 Exemples : Modèles de classes

Exemple : Modèle Point

template<typename T> class Point { ... } ; // modèle de classe
Point<double> p1 ; // instancie un Point de coordonnées réelles
typedef Point<int> PGauss ; // type Point_De_Gauss

Exemple : Modèle Paire
On peut vouloir créer une classe qui réalise une paire d’objets :

template<typename T1, typename T2>
class Paire {... };

On explicite l’instanciation lors de la déclaration d’un objet. Dans le cas d’un modèle de
classes, il suffit de spécifier le(s) type(s) désiré(s) après le nom du modèle du classe entre
les chevrons (< et >). Ainsi :

• Paire<string, double> crée la classe paire string-double.

• Paire<char, unsigned> crée la classe paire char-unsigned.

Un tel modèle de classe existe dans la STL définie dans la bibliothèque <utility> : c’est
la std::pair<T1,T2>.

Exemple : Constructeur de la Paire

template<typename T1, typename T2>
Paire<T1,T2>::Paire(const T1& a, const T2& b)
: first(a), second(b)
{}

Exemple : Valeur par défaut

template<typename T1, typename T2 = unsigned>
class Paire
{
...

};

Cette instruction permet de déclarer la classe paire « char-unsigned » par Paire<char>.

Unisciel algoprog – mo00cours-texte, May 30, 2018 9

4 Compléments

4.1 Surcharge et spécialisation

Surcharge des modèles de fonctions/procédures

Même principe que les fonctions/procédures usuelles.

Version appelée
Lorsqu’il a le choix entre une version dédiée dont le prototype colle directement à l’ap-
pel et l’instanciation d’un modèle, le compilateur choisit systématiquement la version
dédiée. Ce dernier fait est important à connâıtre lorsque l’on cherche à générer, par
exemple, des opérateurs relationnels manquant.

Exemple : Surcharge

// Modèle de procédure
template<typename T>
void afficher(const T& x)
{
cout<<"Affiche"<<x<<endl;

}

// Surdéfinition pour les pointeurs
template<typename T>
void afficher(const T* x)
{
afficher<T>(*x);

}

Spécialisation
Permet de définir une version particulière d’une fonction/procédure ou d’une classe
pour un choix spécifique des paramètres du modèle.

Lorsqu’elle est totale, elle consiste en :

• Ajouter le mot-clé template devant la définition.

• Nommer explicitement le module/classe spécifié.

Exemple : Spécialisation
On peut spécialiser le deuxième modèle (ci-avant) dans le cas des pointeurs sur des entiers
[c’est le <int> après afficher] :

template<>
void afficher<int>(const T* x)
{
cout<<"Affiche le contenu d’un entier: "<<*x<<endl;

}

Unisciel algoprog – mo00cours-texte, May 30, 2018 10

Remarque
La spécialisation :

• Peut s’appliquer à une méthode d’un modèle de classe sans que l’on soit obligé de
spécialiser toute la classe. Utilisée de cette façon, elle peut s’avérer particulièrement
utile.

• N’est pas une surcharge car il n’y a pas génération de plusieurs fonctions de
même nom mais bien une instance spécifique du modèle.

• Peut être partielle (de classes ou de fonctions/procédures).

	Programmation générique
	Modèle de modules
	Mise en oeuvre d'un modèle procédural
	Exemple: Modèle de fonctions
	Exemple: Modèle de procédures

	Modèle de classes
	Mise en oeuvre d'un modèle de classes
	Définition externe des méthodes
	Exemples: Modèles de classes

	Compléments
	Surcharge et spécialisation

