Calcul des nombres de Fibonacci [cx03] - Exercice

Karine Zampieri, Stéphane Rivière

Table des matières

1	Cal	cul des nombres de Fibonacci / pgfib	
	1.1	Algorithme itératif	2
		Algorithme récursif naïf	
	1.3	Algorithme récursif terminal	4
	1.4	Conclusion	5
2	2 Références générales		5

alg - Calcul des nombres de Fibonacci (Solution)

Mots-Clés Complexité des algorithmes ■
Requis Axiomatique impérative, Récursivité des actions ■
Difficulté • ∘ ∘ (30 min) ■

Objectif

Cet exercice analyse la complexité de la suite de FIBONACCI.

1 Calcul des nombres de Fibonacci / pgfib

Définition

Les nombres de Fibonacci sont définis par la relation de récurrence :

$$\begin{cases} F_0 = 0, F_1 = 1 \\ F_n = F_{n-1} + F_{n-2}, & n \ge 2 \end{cases}$$

Nombre d'or

On peut montrer que F_n est l'entier le plus proche de $\Phi^n/\sqrt{5}$ avec Φ le nombre d'or $(\Phi = (1 + \sqrt{5})/2)$.

1.1 Algorithme itératif

Écrivez une fonction fibIter(n) qui calcule et renvoie le n-eme nombre de FIBONACCI en utilisant la récurrence.

Validez votre function avec la solution.

Solution alg @[pgfib.alg]

```
Fonction fibIter ( n : Entier ) : Entier
Début
    f0 <- 0
    f1 <- 1
    Si (n = 0) Alors
      | fn <- f0
    FinSi
    Si (n = 1) Alors
     | fn <- f1
    FinSi
    Pour k <- 2 à n Faire
         fn <- f1 + f0
         f0 <- f1
      | f1 <- fn
    FinPour
    Retourner fn
Fin
```


Quelle est la complexité de l'algorithme?

Solution simple

Clairement, l'algorithme itératif est en $\Theta(n)$.

1.2 Algorithme récursif naïf

Écrivez une fonction récursive fibRec(n) qui calcule et renvoie le n-eme nombre de FIBONACCI en utilisant la récurrence.

Validez votre function avec la solution.

Solution alg @[pgfib.alg]

```
Fonction fibRec ( n : Entier ) : Entier

Début

| Si ( n = 0 ) Alors
| Retourner ( 0 )
| Sinon
| Si ( n = 1 ) Alors
| Retourner ( 1 )
| Sinon
| Retourner ( 1 )
| FinSi
| FinSi
| FinSi
| FinSi
| FinSi
```

?

Montrez par récurrence que la complexité (en nombre d'additions) de cet algorithme est en $\Omega(2^{n/2})$.

Solution simple

On veut montrer qu'il existe une constante c strictement positive telle que $T(n) \ge c2^{n/2}$, pour des valeurs de n supérieures à une certaine borne n_0 (à déterminer).

Supposons le résultat démontré jusqu'au rang n-1. Alors :

$$T(n) = T(n-1) + T(n-2) + 1$$

$$\geq c2^{(n-1)/2} + c2^{(n-2)/2} + 1$$

$$\geq c2^{(n-2)/2} + c2^{(n-2)/2} + 1$$

$$\geq 2 \times c2^{(n-2)/2}$$

$$= c2^{n/2}$$

Il nous reste à montrer que cette équation est vraie « au départ ». Nous ne pouvons bien évidemment pas partir des cas n=0 et n=1, puisque pour ces valeurs T(n)=0. Nous partons donc des cas n=2 et n=3 (la récurrence nécessite **deux** valeurs de départ) :

• Cas n=2: fibRec(2)=fibRec(1)+fibRec(0) et T(2)=1. Pour que la propriété désirée soit vraie, c doit vérifier :

$$1 \ge c2^{2/2} = 2c \quad \Leftrightarrow \quad c \le \frac{1}{2}$$

• Cas n=3: fibRec(3)=fibRec(2)+fibRec(1) et T(3)=2. Pour que la propriété désirée soit vraie, c doit vérifier :

$$2 \ge c2^{3/2} = 2\sqrt{2}c \quad \Leftrightarrow c \le \frac{\sqrt{2}}{2}$$

Donc si $c = \frac{1}{2}$, pour $n \ge 2$, on a $T(n) \ge c2^{n/2}$ et donc $T(n) = \Omega(2^{n/2})$.

Remarque

On peut montrer (par récurrence) que le nombre d'appels pour calculer F_n est F_{n+1} . Comme, en dehors des appels récursifs, l'exécution du corps de la fonction est en $\Theta(1)$, la complexité est donc en $\Theta(\Phi^n)$.

1.3 Algorithme récursif terminal

Écrivez une fonction récursive fib(n) qui calcule et renvoie le n-eme nombre de FIBONACCI en utilisant la récursivité terminale.

Validez votre function avec la solution.

Solution alg @[pgfib.alg]

Quelle est la complexité (en nombre d'additions) de cet algorithme?

Solution simple

La complexité de l'algorithme fibRt, en nombre d'additions, est donnée par la récurrence T(n) = 1 + T(n-1). On a donc T(n) = n-1 pour fibRt, et par extension pour la nouvelle version de fib.

1.4 Conclusion

Des divers algorithmes, que pouvez dire?

Solution simple

L'algorithme naïf récursif est impraticable tandis que l'algorithme itératif et l'algorithme récursif terminal sont efficaces.

2 Références générales

Comprend ■