
Récursivité des actions [rc]
Exercices de cours

Karine Zampieri, Stéphane Rivière

Unisciel algoprog Version 21 mai 2018

Table des matières

1 Appréhender le cours 2
1.1 Fonction factoriel / pgfactoriel . 2
1.2 Boucles récursives / pgboucles . 4
1.3 Recherche d’un zéro / pgzerodich . 6
1.4 Carré d’un entier / pgcarrei . 8

2 Appliquer le cours 10
2.1 Fonction divisible / pgdivisible . 10
2.2 Jeu ”devinez le nombre” / pgdeviner . 12
2.3 Procédure quorest / pgquorest . 14
2.4 Nombre encadré / pgcnombre . 16
2.5 Coefficients binomiaux / binome . 18
2.6 Chiffres d’un entier / pgchiffres . 20
2.7 Code du coffre-fort / pgcoffrefort . 22

3 Approfondir le cours 24
3.1 Fonction 91 de Mac-Carthy / carthy . 24
3.2 Fonction de Morris / morris . 25
3.3 Identité et fonction unité / identite . 26
3.4 0 + 0 = la tête à Gogo / pgtete . 27

4 Références générales 29

C++ - Exercices de cours (Solution)

Mots-Clés Récursivité des actions �
Difficulté • • ◦ (3 h) �

1

Unisciel algoprog – rc00exerc-texte, May 21, 2018 2

1 Appréhender le cours

1.1 Fonction factoriel / pgfactoriel

Objectif
Le factoriel d’un entier naturel n est défini par la relation de récurrence :0! = 1

n! = n · (n− 1)!

Donnez le type de récursivité, la condition d’arrêt et la récurrence.

Solution simple
C’est une récursivité simple de condition d’arrêt 0! = 1 et de récurrence :

n! = n · (n− 1)!

Déduisez une fonction récursive factoriel(n) qui calcule et renvoie le factoriel de n (en-
tier).

Validez votre fonction avec la solution.

Solution C++ @[pgfactoriel.cpp]

/**
Fonction naïve récursive
@param[in] n - un entier
@return Factoriel de n

*/

int factoriel(int n)
{
return (n <= 0 ? 1 : n * factoriel(n - 1));

}

Explicitez le calcul de fac(3) (abrégé de factoriel(3)).

Solution simple
Chaque fonction s’exécute dans son environnement de données associé : lors de l’exécution
du calcul de fac(0)|, il y a quatre variables \lstinlinen@ définies avec quatre valeurs
différentes dans chaque environnement de données. Précisons le déroulement des calculs :

1. Le calcul de fac(3) est lancé (étape 1).

Unisciel algoprog – rc00exerc-texte, May 21, 2018 3

2. Pour évaluer la valeur de 3*fac(2), le calcul de fac(3) se suspend pour connâıtre la
valeur de fac(2) (étape 2).

3. Le calcul de fac(2) se suspend à son tour pour évaluer fac(1) (étape 3), lequel se
suspend également pour évaluer fac(0).

4. Grâce à la condition d’arrêt, fac(0)| renvoie 1: cette valeur remplace \lstinlinefac(0)@
dans le calcul suspendu de fac(1).

5. Le calcul de fac(1) peut reprendre là où il était suspendu et s’effectuer, fac(1)

renvoie 1, et le calcul de fac(2) peut reprendre et s’effectuer pour produire 2, puis
le calcul de fac(3) reprend et s’effectue pour produire 6.

Finalement, on a calculé :

fac(3) -> 3*fac(2) -> 3*2*fac(1) -> 3*2*1*fac(0) -> 3*2*1*1 -> 6

Écrivez une fonction récursive terminale facRt(n,a) qui calcule et renvoie le factoriel de
n (entier), l’entier a étant le résultat.

Écrivez une fonction mâıtre factorielRt(n) qui lance la fonction récursive terminale.

Validez vos fonctions avec la solution.

Solution C++ @[pgfactoriel.cpp]

/**
Fonction récursive terminale
@param[in] n - un entier
@param[in] a - un entier
@return Factoriel de n

*/

int facRt(int n, int a)
{
return (n <= 0 ? a : facRt(n - 1,a * n));

}

/**
Fonction récursive terminale maître
@param[in] n - un entier
@return Factoriel de n

*/

int factorielRt(int n)
{
return facRt(n,1);

}

Écrivez un programme qui saisit un entier et teste les fonctions.

Unisciel algoprog – rc00exerc-texte, May 21, 2018 4

1.2 Boucles récursives / pgboucles

Écrivez le profil d’une procédure récursive afficherBoucleUp(n1,n2) qui affiche les entiers
de n1 à n2 en ordre croissant.

Donnez le type de récursivité, la condition d’arrêt et la récurrence.

Solution simple
C’est une récursivité simple de condition d’arrêt n1>n2 et de récurrence n1+1.

Déduisez le corps de la procédure récursive.
Exemple :

afficherBoucleUp(-3,5) ==> -3 -2 -1 0 1 2 3 4 5

Validez votre procédure avec la solution.

Solution C++ @[pgboucles.cpp]

/**
Procédure afficherBoucleUp
@param[in] n1 - un entier
@param[in] n2 - un entier

*/

void afficherBoucleUp(int n1, int n2)
{
if (n1 <= n2)
{

cout<<n1<<endl;
afficherBoucleUp(n1 + 1,n2);

}
}

En utilisant les mêmes principes, écrivez une procédure récursive afficherBoucleDn(n1,n2)

qui affiche les entiers de n1 à n2 en ordre décroissant. Exemple :

afficherBoucleDn(-3,5) ==> 5 4 3 2 1 0 -1 -2 -3

Validez votre procédure avec la solution.

Solution C++ @[pgboucles.cpp]

/**
Procédure afficherBoucleDn
@param[in] n1 - un entier
@param[in] n2 - un entier

Unisciel algoprog – rc00exerc-texte, May 21, 2018 5

*/

void afficherBoucleDn(int n1, int n2)
{
if (n1 <= n2)
{

afficherBoucleDn(n1 + 1,n2);
cout<<n1<<endl;

}
}

Écrivez un programme qui saisit deux entiers et teste les procédures.

Validez votre programme avec la solution.

Solution C++ @[pgboucles.cpp]

int main()
{
int n1, n2;
cout<<"n1? ";
cin>>n1;
cout<<"n2 (>=n1)? ";
cin>>n2;
afficherBoucleUp(n1,n2);
afficherBoucleDn(n1,n2);

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 6

1.3 Recherche d’un zéro / pgzerodich

Objectif
On cherche à calculer un zéro d’une fonction réelle continue f sur un intervalle [a, b],
prenant des valeurs de signes opposés aux extrémités. Le théorème des valeurs intermé-
diaires assure l’existence d’un zéro. L’idée de la dichotomie est de chercher un zéro sur
[a, (a + b)/2] ou bien sur [(a + b)/2, b], selon le signe de f((a + b)/2).

Écrivez une fonction récursive zerodich(a,b,epsilon) qui calcule et renvoie un zéro d’une
fonction réelle continue f sur un intervalle [a,b] à epsilon près.

Validez votre fonction avec la solution.

Solution C++ @[pgzerodich.cpp]

/**
Suppose que f(a)*f(b) < 0
@param[in] a - un réel
@param[in] b - un réel
@param[in] epsilon - précision
@return le zéro de f entre [a,b] à epsilon près

*/

double zerodicho(double a, double b, double epsilon)
{
double c = (a + b) / 2.0;
double fc = f(c);
if (std::abs(fc) < epsilon)
{

return c;
}
else if (f(a) < fc)
{

return zerodicho(a,c);
}
else
{

Unisciel algoprog – rc00exerc-texte, May 21, 2018 7

return zerodicho(c,b);
}

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 8

1.4 Carré d’un entier / pgcarrei

Écrivez une fonction récursive carrei(n) qui calcule et renvoie le carré d’un entier positif
n par la méthode des impairs.

Orientation
Analysons le problème :

Étape 1 Commençons par chercher l’expression commune à tous les appels récursifs de
la fonction considérée. Prenons quelques exemples :

4^2 = 1 + 3 + 5 + 7
3^2 = 1 + 3 + 5
2^2 = 1 + 3
1^2 = 1

Nous pouvons les réécrire de la manière suivante :

4^2 = 3^2 + 7
3^2 = 2^2 + 5
2^2 = 1^2 + 3
1^2 = 1

ce qui donne l’expression commune à chaque étape : le carré d’un valeur n est
(2*n-1) additionné au carré de (n-1).

Vérifions :

carrei(4) = carrei(3) + 7
carrei(3) = carrei(2) + 5

Étape 2 Trouvez le point d’arrêt de la récursivité.
On connâıt la valeur de 12 qui vaut 1. Donc 1 est notre point d’arrêt.

Étape 3 Vérifiez qu’à chaque appel, la fonction se rapproche du point d’arrêt.
Le point de départ de notre calcul est une valeur n strictement positive. A chaque
étape, on diminue n de 1, donc on finira bien par atteindre la valeur n = 1.

Validez votre fonction avec la solution.

Solution C++ @[pgcarrei.cpp]

/**
Carré par la méthode des impairs
@param[in] n - un entier naturel
@return le carré de n

*/

int carrei(int n)
{
return (n == 1 ? 1 : 2 * n - 1 + carrei(n - 1));

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 9

Écrivez un programme qui teste votre fonction.

Testez.

Validez votre programme avec la solution.

Solution C++ @[pgcarrei.cpp]

int main()
{
int val;
cout<<"Votre entier positif? ";
cin>>val;
cout<<carrei(val)<<endl;

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 10

2 Appliquer le cours

2.1 Fonction divisible / pgdivisible

Propriété
Un entier n est divisible par un entier p, si (et seulement si) le reste de la division entière
de n par p (c.-à-d. le modulo) est nul.

Dans le cas où 0 < b ≤ a, écrivez une fonction récursive divisible1(a,b) qui teste et
renvoie Vrai si un entier a est divisible par un entier b.

De même, dans le cas où a < b (avec b > 0), écrivez une fonction récursive divisible2(a,b)

qui teste et renvoie Vrai si un entier a est divisible par un entier b.

Validez vos fonctions avec la solution.

Solution C++ @[pgdivisible.cpp]

/**
Prédicat de divisibilité (cas 0 <= b <= a)
@param[in] a - un entier
@param[in] b - un entier
@return Vrai si a est divisible par b

*/

bool divisible1(int a, int b)
{
return (a <= b ? a == b : divisible1(a - b,b));

}

/**
Prédicat de divisibilité (cas a <= b avec b positif)
@param[in] a - un entier
@param[in] b - un entier
@return Vrai si a est divisible par b

*/

bool divisible2(int a, int b)
{
return (a >= b ? a == b : divisible2(a + b,b));

}

Déduisez une fonction mâıtre divisible(n,p) qui teste et renvoie Vrai si un entier n est
divisible par un entier p.

Validez votre fonction avec la solution.

Unisciel algoprog – rc00exerc-texte, May 21, 2018 11

Solution C++ @[pgdivisible.cpp]

/**
Prédicat de divisibilité: cas général
@param[in] n - un entier
@param[in] p - un entier
@return Vrai si n est divisible par p

*/

bool divisible(int n, int p)
{
int a = n, b = p;
if (b < 0)
{

a = -a;
b = -b;

}
if (b == 0)
{

return false;
}
else if (a >= b)
{

return divisible1(a,b);
}
else
{

return divisible2(a,b);
}

}

Écrivez un programme qui saisit deux entiers puis teste votre fonction.

Testez.

Vos deux entiers? 125632 256
==>divisible(a,b) vaut Faux

Validez votre programme avec la solution.

Solution C++ @[pgdivisible.cpp]

int main()
{
int a, b;
cout<<"Vos deux entiers? ";
cin>>a>>b;
cout<<"==> divisible(a,b) vaut "<<divisible(a,b)<<endl;

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 12

2.2 Jeu ”devinez le nombre” / pgdeviner

Objectif
Le jeu « devinez le nombre de 1 à 100 » est le suivant :

• La personne #1 choisit secrètement un entier X de 1 à 100

• La personne #2 propose à la personne #1 un entier P de 1 à 100, qui lui répond

— C’est exact si X = P

— Plus bas si X < P

— Plus haut si X > P

• La personne #2 doit répéter jusqu’à ce que le nombre est deviné.

Quelle est la stratégie la plus efficace pour trouver l’entier mystère ?

Solution simple
Utiliser une recherche dichotomique.

Écrivez le profil et le début de la procédure récursive deviner(vmin,vmax,mystere) du jeu :
elle demande à l’utilisateur un entier compris dans [vmin..vmax], l’entier mystere étant le
nombre à deviner.

Écrivez les trois cas de la récursion.
Affichez l’invite :

Devinez l’entier entre [vmin] et [vmax]?

Validez votre procédure avec la solution.

Solution C++ @[pgdeviner.cpp]

/**
Procédure deviner
@param[in] vmin - entier vmin
@param[in] vmax - entier vmax
@param[in] mystere - entier mystere

*/

void deviner(int vmin, int vmax, int mystere)
{
int nombre;
cout<<"Devinez l’entier entre "<<vmin<<" et "<<vmax<<"? ";
cin>>nombre;
if (nombre == mystere)
{

cout<<"C’est exact"<<endl;
}
else if (mystere < nombre)
{

Unisciel algoprog – rc00exerc-texte, May 21, 2018 13

cout<<"Plus bas"<<endl;
deviner(vmin,nombre - 1,mystere);

}
else
{

cout<<"Plus haut"<<endl;
deviner(nombre + 1,vmax,mystere);

}
}

Écrivez un programme qui lance le jeu entre 1 et 100 en tirant au hasard l’entier mystère.

Outil C++
La fonction rand(), définie dans la bibliothèque <random>, renvoie un entier pseudo-aléatoire
positif ou nul. Utilisez le modulo pour projeter l’entier dans l’intervalle souhaité.

Outil C++
L’initialisation du générateur de nombres pseudo-aléatoires (ici avec l’horloge système)
s’effectuera dans le programme principal avec l’instruction :

srand(time(NULL));

La procédure srand est définie dans la bibliothèque <random> et la fonction time dans la
bibliothèque <ctime>.

Testez.

Validez votre programme avec la solution.

Solution C++ @[pgdeviner.cpp]

int main()
{
srand(time(0));
deviner(1,100,(rand() % 100) + 1);

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 14

2.3 Procédure quorest / pgquorest

Propriété
La relation de la division entière est :

a = qn∗ b + rn∗ avec 0 ≤ rn∗ < b

les suites étant définies par : 
qn = qn−1 + 1
rn = rn−1 − b

q0 = 0, r0 = a

Prouvez la relation.

Solution simple
En effet, à l’initialisation a = 0 · b + a = a. Et si l’on suppose la relation vraie jusqu’à
l’ordre k, à l’ordre suivant :

a = (qk + 1) b + (rk − b)
= qk b + rk qui est vraie

Écrivez une procédure récursive quorest(a,b,quotient,reste) qui calcule dans quotient le
quotient entier de la division d’un entier a par un entier b et dans reste le reste de cette
division. Les entiers a et b sont supposés positifs.

Validez votre procédure avec la solution.

Solution C++ @[pgquorest.cpp]

/**
Procédure quorest
@param[in] a - un entier
@param[in] b - un entier
@param[out] qt - entier quotient de a par b
@param[out] rt - entier reste de a par b

*/

void quorest(int a, int b, int& qt, int& rt)
{
if (a < b)
{

qt = 0;
rt = a;

}
else
{

Unisciel algoprog – rc00exerc-texte, May 21, 2018 15

quorest(a - b,b,qt,rt);
++qt;

}
}

Écrivez un programme qui saisit deux entiers positifs puis calcule et affiche l’opération
de la division entière.

Testez. Exemple d’exécution :

Deux entiers positifs? 50 6
50 = 8 * 6 + 2

Validez votre programme avec la solution.

Solution C++ @[pgquorest.cpp]

int main()
{
int a, b;
cout<<"Vos deux entiers positifs? ";
cin>>a>>b;
int qt, rt;
quorest(a,b,qt,rt);
cout<<a<<" = "<<qt<<" * "<<b<<" + "<<rt<<endl;

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 16

2.4 Nombre encadré / pgcnombre

Objectif
Cet exercice demande deux entiers puis affiche le premier entier, entouré d’autant de
paires de crochets "[" et "]" qu’indiqué par la valeur du deuxième nombre (supposé
positif ou nul). Exemples d’exécution :

42 3
==> [[[42]]]

24 0
==> 24

Quelle est la condition d’arrêt ?

Solution simple
C’est que nc (nombre de crochets) vaut zéro.

Et la récurrence ?

Solution simple
C’est :

1. Affichez un crochet ouvrant

2. Appelez récursivement avec nc-1 paires de crochets

3. Affichez un crochet fermant

Écrivez une procédure récursive afficherCNombre(n,nc) qui affiche un entier n entouré de
nc (entier) de paires de crochets "[" et "]".

Validez votre procédure avec la solution.

Solution C++ @[pgcnombre.cpp]

/**
Procédure afficherCNombre
@param[in] n - un entier
@param[in] nc - nombre de crochets

*/

void afficherCNombre(int n, int nc)
{
if (nc == 0)
{

cout<<n;
}
else

Unisciel algoprog – rc00exerc-texte, May 21, 2018 17

{
cout<<"[";
afficherCNombre(n,nc - 1);
cout<<"]";

}
}

Écrivez un programme qui saisit deux entiers et teste la procédure.

Testez.

Validez votre programme avec la solution.

Solution C++ @[pgcnombre.cpp]

int main()
{
int n;
cout<<"Votre entier? ";
cin>>n;
int nc;
cout<<"Nombre de crochets? ";
cin>>nc;
afficherCNombre(n,nc);

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 18

2.5 Coefficients binomiaux / binome

Propriété

Les coefficients du binôme
(

n
k

)
(1 ≤ k < n) sont calculables récursivement selon :

• si k = 0 ou k = n : retourner 1
• sinon retourner

(
n−1
k−1

)
+
(

n−1
k

)

Donnez le type de récursivité, la condition d’arrêt et la récurrence.

Solution simple
C’est une récursivité multiple de conditions d’arrêts p = 0 ou p > n et de récurrence la
formule ci-dessus.

Écrivez une fonction récursive binome(n,p) qui calcule et renvoie le coefficient binomial
(

n
p

)
.

Validez votre fonction avec la solution.

Solution C++ @[PGrecursivite.cpp]

/**
Fonction binome
@param[in] n - un entier naturel
@param[in] p - un entier naturel
@return le binomial(n,p)

*/

int binome(int n, int p)
{
if (p == 0 || p == n)
{

return 1;
}
else
{

return (binom(n - 1,p) + binom(n - 1,p - 1));
}

}

Quelle est la complexité de la traduction directe de cet algorithme ?

Solution simple
Il est exponentiel car pour chaque étape de calcul il faut recalculer plusieurs fois les
coefficients binomiaux d’ordre inférieur.

Proposez un autre algorithme récursif ayant cette fois une complexité polynomiale.

Unisciel algoprog – rc00exerc-texte, May 21, 2018 19

Aide simple
Essayez de mettre en évidence une autre relation de récurrence en vous aidant du fait
que

(
n
k

)
= n!

k!(n−k)! . (
5
3

)(
4
2

) (
4
3

)(
3
1

) (
3
2

) (
3
3

) (
3
2

)(
2
0

) (
2
1

) (
2
1

) (
2
2

) (
2
1

) (
2
2

)(
1
0

) (
1
1

) (
1
0

) (
1
1

) (
1
0

) (
1
1

)

Solution simple
En développant la relation :(

n

k

)
= n!

k! · (n− k)! = n · (n− 1) · ... · (n− k + 1)
k · (k − 1) · ... · 1

= n

k
· (n− 1) · ... · (n− k + 1)

(k − 1) · ... · 1

En terme de récurrence, on peut établir la nouvelle relation :(
n

k

)
=
(

n− 1
k − 1

)
· n

k
si k > 0 et

(
n

0

)
= 1

La double récursion est ainsi supprimée et il y a au plus k + 1 appels de fonction.
L’algorithme est polynomial en O(k).

Écrivez une fonction récursive binomeRec(n,k) qui calcule et renvoie le coefficient bino-
mial

(
n
k

)
qui évite la double récursion.

Validez votre fonction avec la solution.

Solution C++

unsigned binomeRec(unsigned n, unsigned k)
{ return (0 == k) ? 1 : binomeRec(n-1, k-1) * n / k; }

Unisciel algoprog – rc00exerc-texte, May 21, 2018 20

2.6 Chiffres d’un entier / pgchiffres

Objectif
Cet exercice demande un entier puis affiche la suite de ses chiffres de la droite vers la
gauche puis de la gauche vers la droite. Exemple d’exécution :

Votre entier? 12354
==> De droite à gauche
45321
==> De gauche à droite
12354

Écrivez une procédure récursive afficherChiffreDG(n) qui affiche la suite des chiffres d’un
entier n de la droite vers la gauche.

Validez votre procédure avec la solution.

Solution C++ @[pgchiffres.cpp]

/**
Procédure afficherChiffreDG
@param[in] n - un entier

*/

void afficherChiffreDG(int n)
{
if (n > 0)
{

cout<<n % 10<<endl;
afficherChiffreDG(n / 10);

}
}

De même, écrivez une procédure récursive afficherChiffreGD(n) qui affiche la suite des
chiffres d’un entier n de la gauche vers la droite.

Validez votre procédure avec la solution.

Solution C++ @[pgchiffres.cpp]

/**
Procédure afficherChiffreGD
@param[in] n - un entier

*/

void afficherChiffreGD(int n)
{
if (n > 0)
{

Unisciel algoprog – rc00exerc-texte, May 21, 2018 21

afficherChiffreGD(n / 10);
cout<<n % 10<<endl;

}
}

Écrivez un programme qui saisit un entier et teste vos procédures.

Testez.

Validez votre programme avec la solution.

Solution C++ @[pgchiffres.cpp]

int main()
{
int n;
cout<<"Votre entier? ";
cin>>n;
cout<<"==> De droite à gauche:"<<endl;
afficherChiffreDG(n);
cout<<"==> De gauche à droite:"<<endl;
afficherChiffreGD(n);

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 22

2.7 Code du coffre-fort / pgcoffrefort

Afin de protéger l’accès au coffre-fort, un nombre aléatoire est généré pour servir de
code à la prochaine ouverture. Ce nombre aléatoire fait moins de 10 chiffres. De plus, le
nombre de chiffres pairs de ce nombre est rajouté comme chiffre des unités.

Écrivez une version récursive nbChiffPairs(nb) qui calcule le dernier chiffre, à rajouter au
nombre donné, pour former le code du coffre-fort.

Solution simple
Si nb vaut zéro, alors c’est 1. Sinon il faut analyser chaque chiffre de nb et regarder s’il
est pair : si oui, il y en a un en plus. D’où il convient de définir une fonction récursive
nbChiffPairsRec(nb) qui calcule le nombre de chiffres pairs d’un nombre donné, supposé
non nul positif pour faire ce calcul.

Validez votre fonction avec la solution.

Solution C++ @[pgcoffrefort.cpp]

/**
Fonction récursive
@param[in] nb - un entier
@return le nombre de chiffres pairs de n

*/

int nbChiffPairsRec(int nb)
{
if (nb == 0)
{

return 0;
}
else
{

return ((nb % 10) % 2 == 0 ? 1 : 0) + nbChiffPairsRec(nb / 10);
}

}

/**
Fonction maître
@param[in] nb - un entier
@return le nombre de chiffres pairs de n

*/

int nbChiffPairs(int nb)
{
return (nb == 0 ? 1 : nbChiffPairsRec(nb));

}

Testez.

Unisciel algoprog – rc00exerc-texte, May 21, 2018 23

Validez votre programme avec la solution.

Solution C++ @[pgcoffrefort.cpp]

int main()
{
int code;
cout<<"Votre code (entiers ayant moins de 10 chiffres)? ";
cin>>code;
int nc = nbChiffPairs(code);
cout<<"Nombres de chiffres pairs de "<<code<<" : "<<nc<<endl;

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 24

3 Approfondir le cours

3.1 Fonction 91 de Mac-Carthy / carthy

Définition
Introduite par Mac-Carthy pour montrer certains pièges de la récursivité, considérons
la fonction récursive :

F (n) =

n− 10 si n > 100
F (F (n + 11)) sinon

Écrivez une fonction carthy(n) de la définition.

Validez votre fonction avec la solution.

Solution C++ @[PGrecursivite.cpp]

/**
Fonction carthy
@param[in] n - un entier
@return carthy(n)

*/

int carthy(int n)
{
return (n > 100 ? (n - 10) : carthy(carthy(n + 11)));

}

Trouvez la valeur de F pour tout n.

Unisciel algoprog – rc00exerc-texte, May 21, 2018 25

3.2 Fonction de Morris / morris

Définition
La fonction dite « de Morris » est définie par (m et n entiers naturels) :

morris(m, n) =

1 si m = 0
morris(m− 1, morris(m, n)) sinon

Écrivez une fonction morris(m,n) de la définition.

Validez votre fonction avec la solution.

Solution C++ @[PGrecursivite.cpp]

/**
Fonction morris
@param[in] m - un entier naturel
@param[in] n - un entier naturel
@return morris(m,n)

*/

int morris(int m, int n)
{
return (m == 0 ? 1 : morris(m - 1,morris(m,n)));

}

Quel est le problème de cette fonction ?

Solution simple
Une preuve trop rapide de terminaison de cette fonction conduirait à écrire :

• On considère l’ordre lexicographique sur N2.

• Le calcul de morris(m,n) fait appel au calcul de morris(m-1,X) et (m−1, X) ≺ (m, n)
pour tout X.

• La fonction termine lorsque son premier paramètre est nul.

Mais X = morris(m, n). Alors l’exécution de morris(1,0) ne termine pas car ce calcul
conduit à l’exécution de morris(0,morris(1,0)), donc à nouveau au calcul de morris(1,0) et
ainsi de suite. En effet, dans la plupart des langages de programmation, les paramètres
sont évalués avant d’être passés à la fonction (on parle « d’appel par valeurs ») : le
langage évalue en priorité les expressions les plus profondes d’une expression donnée.
Bref, il faut être attentif !

Unisciel algoprog – rc00exerc-texte, May 21, 2018 26

3.3 Identité et fonction unité / identite

Définition
Voici une « définition » farfelue mais correcte de l’application identité Id sur les entiers
naturels : Id(0) = 0

Id(n) = n ∗ Un(n− 1),∀n ≥ 1

où Un désigne la fonction constante qui a tout n associe 1, que l’on peut définir de la
manière suivante : Un(0) = 1

Un(n) = Id(n)− Id(n− 1),∀n ≥ 1

Écrivez des fonctions mutuellement récursives Id(n) et Un(n) avec n entier positif ou nul.

Validez votre fonction avec la solution.

Solution C++ @[PGrecursivite.cpp]

/**
Fonction Id
@param[in] n - un entier
@return Id(n)

*/

int Id(int n)
{
return (n == 0 ? 0 : n * Un(n - 1));

}

/**
Fonction Un
@param[in] n - un entier
@return Un(n)

*/

int Un(int n)
{
return (n == 0 ? 1 : Id(n) - Id(n - 1));

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 27

3.4 0 + 0 = la tête à Gogo / pgtete

Objectif
Comme vous le savez, 0+0=0.

On pourrait aussi dire 0=(0+0). Dans ce cas, on peut aussi aller un peu plus loin, et
puisque 0 vaut (0+0), remplacer les 0 de (0+0) par leur valeur, et obtenir :

0 = ((0 + 0) + (0 + 0))

Rien n’empêche de continuer et d’écrire :

0 = (((0 + 0) + (0 + 0)) + ((0 + 0) + (0 + 0)))

Cela devient vite fatiguant de le faire à la main. Cet exercice le fait pour vous. Exemples
d’exécution :

Un entier? 0
==> 0 = 0

Un entier? 2
==> 0 = ((0 + 0) + (0 + 0))

Quelle est la condition d’arrêt ?
Quelle est la récurrence ?

Solution simple
La condition d’arrêt est que n vaut zéro et la récurrence est :

1. Affichez une parenthèse ouvrante

2. Appelez récursivement avec n-1

3. Affichez un plus

4. Appelez récursivement avec n-1

5. Affichez une parenthèse fermante

Unisciel algoprog – rc00exerc-texte, May 21, 2018 28

Écrivez une procédure récursive afficherTeteToto(n) qui affiche n fois les zéros à droite de
l’égalité « 0=0 » par leur valeur « (0+0) ».

Validez votre procédure avec la solution.

Solution C++ @[pgtete.cpp]

/**
Procédure afficherTeteToto
@param[in] n - un entier

*/

void afficherTeteToto(int n)
{
if (n == 0)
{

cout<<"0";
}
else
{

cout<<"(";
afficherTeteToto(n - 1);
cout<<"+";
afficherTeteToto(n - 1);
cout<<")";

}
}

Écrivez un programme qui saisit un entier et lance la procédure.

Testez.

Validez votre programme avec la solution.

Solution C++ @[pgtete.cpp]

int main()
{
int n;
cout<<"Un entier? ";
cin>>n;
cout<<"==> 0 = ";
afficherTeteToto(n);

}

Unisciel algoprog – rc00exerc-texte, May 21, 2018 29

4 Références générales

Comprend [Felea-PG1 :c3 ;ex85], [Franceioi-AL1 :c6 :ex1], [Franceioi-AL1 :c6 :ex4] �

	Appréhender le cours
	Fonction factoriel / pgfactoriel
	Boucles récursives / pgboucles
	Recherche d'un zéro / pgzerodich
	Carré d'un entier / pgcarrei

	Appliquer le cours
	Fonction divisible / pgdivisible
	Jeu "devinez le nombre" / pgdeviner
	Procédure quorest / pgquorest
	Nombre encadré / pgcnombre
	Coefficients binomiaux / binome
	Chiffres d'un entier / pgchiffres
	Code du coffre-fort / pgcoffrefort

	Approfondir le cours
	Fonction 91 de Mac-Carthy / carthy
	Fonction de Morris / morris
	Identité et fonction unité / identite
	0 + 0 = la tête à Gogo / pgtete

	Références générales

