Récursivité des actions [rc]
Support de Cours

Karine Zampieri, Stéphane Riviere

unie UNIVERSITE
i HAUTE-ALSACE

Unisciel °“ algoprog Version 21 mai 2018

Table des matieres
1 Définition et exemples

2 Types de récursivité
2.1 Récursivité simple
2.2 Récursivité multiple
2.3 Récursivité mutuelle oL
2.4 Récursivité imbriquéeo
2.5 Récursivité terminale

3 Algorithme récursif

4 Ordre des appels récursifs
4.1 Entiers par ordre décroissant
4.2 Entiers par ordre croissant
4.3 Entiers par ordre croissant puis décroissanto L.
4.4 Entiers par ordre décroissant puis croissanto oL

5 Exemple : Les tours de Hanoi
5.1 Leprobleme
5.2 Résolution
5.3 Algorithme et Complexité
5.4 Programme principalo Lo

6 Coit de la récursivité
6.1 Arborescences d'appels
6.2 Cout de la récursivité

7 Récursivité terminale
7.1 Rappel de définition
7.2 Exemple : Factoriel récursif terminal
7.3 Fonctionnement de la récursion terminale L.

[\

© 00 O U

Unisciel algoprog — rcOOcours-texte, May 21, 2018 2

8 Compléments 26
8.1 Récursivité directe ou indirecte 26
8.2 TerminaiSon e 27
8.3 Non décidabilité de la terminaison 29
8.4 Résumé : recette de récursivité 30

9 Conclusion 31

alg - Récursivité des actions (Cours)

Mots-Clés Récursivité des actions

Requis Algorithmes paramétrés, Preuve et Notations asymptotiques
Difficulté eeo (2h) R

Introduction

La récursivité est un des concepts de programmation les plus importants. Le principe de
I’approche récursive est le suivant : ramener le probleme a résoudre a un sous-probleme
correspondant & une instance « réduite » du probléeme lui-méme. Approcher un probléeme
de cette fagon, un sous-programme s’appelant lui-méme, requiert quelque expérience.
Les approches récursives se trouvent dans les parcours d’arbres, les recherches en largeur
d’abord et en profondeur d’abord dans les graphes et les tris.

Ce module définit la récursion et les types de récursivité, donne les propriétés des al-
gorithmes récursifs, présente des exemples classiques d’algorithmes récursifs, analyse le
cotit de la récursivité et décrit la récursivité terminale qui est une forme de récursion pour
laquelle les compilateurs modernes savent la reconnaitre et produire un code optimisé.

Unisciel algoprog — rcOOcours-texte, May 21, 2018 3

Définition et exemples

Le mot « récursion » vient du latin recursare qui signifie courir en arriere, revenir. L’idée
de réapparition, de retour, est donc étymologiquement liée a la récursivité.

Lorsqu'un systeme contient une autoréférence (ou une copie de lui-méme), on dit
que ce systeme est récursif.

Dans le domaine végétal, le romanesco (hybride broccolo/choux-fleur) est tres récursif.

L’effet droste (image en abyme).
http://images.math.cnrs.fr/L-effet-Droste.html

Les poupées russes ou matriochkas sont des séries de poupées de tailles décroissantes
placées les unes a l'intérieur des autres. Une poupée russe est donc :

e Soit une poupée « pleine » (qu’on ne peut ouvrir).
e Soit une poupée « vide » contenant une poupée russe.

http://fr.wikipedia.org/wiki/Poup%C3%A9e_russe

http://images.math.cnrs.fr/L-effet-Droste.html
http://fr.wikipedia.org/wiki/Poup%C3%A9e_russe

Unisciel algoprog — rcOOcours-texte, May 21, 2018 4

Une fagon simple de définir la relation de parenté entre deux personnes est d’énoncer que
x et y sont parents :

e Soit si y est pere, mere, fils ou fille de = (ou époux si on inclut la parenté par
alliance).

e Soit s’il existe un individu z tel que x est parent de z et z est parent de y.

Exprimer la méme définition de fagon non récursive obligerait a recourir a la notion de
« chaine de parenté » et a introduire dans la définition la longueur d’une telle chaine.

La récursivité est un concept tres puissant quand on sait décomposer un probleme en
un ou plusieurs sous-problemes qui sont de méme nature, mais qui s’appliquent a un
nombre d’objets plus réduit. Il en est de méme quand on sait décomposer un objet en
groupes de composants qui présentent les mémes propriétés que l'objet lui-méme et qui
ne contiennent qu’un sous-ensemble de 1’objet.

Une définition récursive est une définition dans laquelle intervient ce que I'on veut
définir. Un algorithme récursif est un algorithme défini en fonction de lui-méme. Par
conséquent :

Une procédure (ou fonction) P est dite récursive si son exécution peut provoquer un ou
plusieurs appels (dits récursif) a p.

Unisciel algoprog — rcOOcours-texte, May 21, 2018
2 Types de récursivité

2.1 Récursivité simple

“!s; . Contient un seul appel récursif a P dans le corps d’une procédure récursive P.

Un escalier de hauteur h c’est :
e (Vision itérative) Une séquence de h marches

e (Vision récursive) Une marche suivie d’'un escalier de hauteur h — 1

(tig)) Algorithme monterEscalier

Action monterEscalier (h : Entier)
Début

| Si (h>@) Alors

| | monterMarche ()

| | monterEscalier (h - 1)

| FinSi
Fin

Unisciel algoprog — rcOOcours-texte, May 21, 2018 6

2.2 Récursivité multiple

B

Une récursivité est multiple si il y a plusieurs appels récursifs a P dans le corps d’une
procédure récursive P.

La suite de FIBONACCI est définie par (n entier naturel) :

Jo=0;fi=1
fn = fn—l +fn—2 pour n > 1

(b)) | Algorithme fib

Fonction fib (n : Entier) : Entier
Début
| Si(n=20)
| | Retourner (@)
| Sinon Si (n=1)
| | Retourner (1)
| Sinon
| | Retourner (fib (n - 1) + fib (n -2))
| FinSi
Fin

fib(3) = fib(2)+fib(1)

= (fib(1)+fib(@))+fib(1)
(1+0)+1

2

Unisciel algoprog — rcOOcours-texte, May 21, 2018 7

2.3 Récursivité mutuelle

\1.,-——| ' Une récursivité est mutuelle ou croisée quand une procédure P appelle une procédure
Q qui déclenche un appel récursif a p.

% La situation est obligatoirement symétrique, puisque Q déclenchera un appel de P, qui
déclenchera a son tour un appel de Q.

La parité d’un entier naturel n peut étre définie par :

) vrat sin=0
pair(n) = . .
impair(n — 1) sinon
. . faux sin=0
impair(n) =

pair(n — 1) sinon

(big)) Algorithmes pair, impair

Fonction pair (n : Entier) : Booléen
Début
| Si (n=2@) Alors
| | Retourner (Vrai)
| Sinon
| | Retourner (impair (n -1))
| FinSi
Fin

Fonction impair (n : Entier) : Booléen
Début

| Si (n=20) Alors

| | Retourner (Faux)

| Sinon

| | Retourner (pair (n - 1))

| FinSi
Fin

Les fonctions pair et impair s’invoquent mutuellement :
pair(3)

=> impair(2)

-> pair(1)

-> impair(9)

La derniere invocation renvoie Faux :

Unisciel algoprog — rcOOcours-texte, May 21, 2018

impair (@)=Faux

-> pair(1)=Faux
-> impair(2)=Faux
-> pair(3)=Faux
-> Faux

Unisciel algoprog — rcOOcours-texte, May 21, 2018

2.4 Récursivité imbriquée

Une récursivité est imbriquée si une procédure récursive P contient un appel imbriqué.

B

La fonction d’ACKERMANN (n et p entiers naturels) est définie comme suit :

p+1 sin=20
A(n,p) = ¢ A(n—1,1) sin>0etp=0
A(n—1,A(n,p—1)) sinon

() Fonction ackermann

Fonction ackermann (n , p : Entier) : Entier
Début

| Si (n=20) Alors
Retourner (p + 1)

Si (p=20) Alors
| Retourner (ackermann (n -1, 1))

Sinon
| Retourner (ackermann (n - 1 , ackermann (n , p-1))
| FinSi

FinSi

I
Sinon
I
I
I
I

|
I
I
I
I
|
|
I
Fin

@[rcackermannAl.alg]

Unisciel algoprog — rcOOcours-texte, May 21, 2018 10

2.5 Récursivité terminale

\1_,-‘-—-—| I La récursivité est terminale si 'appel récursif est la derniere instruction et elle est
isolée.

L’addition de deux entiers positifs ou nuls peut étre définie comme suit :

(big}) Fonction plus

Fonction plus (a , b : Entier) : Entier
Début
| Si (b=) Alors
| | Retourner (a)
| Sinon
| | Retourner (plus (a+1,b-1))
| FinSi
Fin

plus(4,2)
plus(5,1)
plus(6,0)
6

A La récursivité n’est pas terminale si 'appel récursif n’est pas la derniere instruction
et/ou elle n’est pas isolée (c.-a-d. qu’elle fait partie d’'une expression).

Retour sur ’addition.

(o)]

Fonction plus (a , b : Entier) : Entier
Début
| Si (b=20)
| | Retourner (a)
| Sinon
| | Retourner (1 +plus (a, b-1))
| FinSi
Fin

plus(4,2) = 1+plus(4,1) = 1+1+plus(4,0) = 1+1+4=6

B

Unisciel algoprog — rcOOcours-texte, May 21, 2018 11

Algorithme récursif

Un algorithme est dit récursif si 'expression qui le définit fait appel a lui-méme. On
qualifiera de récursif, un appel a une fonction f provoqué par ’évaluation d’un autre

appel a f.

{’ \\ N__/ —

— |l —
* # —_— A
~. - e ~

- B

Deux regles sont a respecter impérativement :

Reégle 1 : Un algorithme récursif doit étre défini par une expression conditionnelle dont
I’'un au moins des cas mene a une expression évaluable sans appel récursif. Une telle
expression est appelée condition d’arrét ou test d’arrét ou clause terminale
ou cas de base ou encore cas trivial.

Reégle 2 : 1l faut s’assurer que pour toute valeur du (ou des) parametre(s), il suffira
d’un nombre fini d’appels récursifs pour atteindre la condition d’arrét.

Ces deux regles assurent la terminaison de tout appel a un algorithme récursif en empe-
chant la possibilité d’une infinité d’appels récursifs.

Action R(données X ; résultats Y)

Début
Si terminaison(X) Alors
Y <-...
Sinon
R(entrée_réduite ,...)
FinSi

Fin

Unisciel algoprog — rcOOcours-texte, May 21, 2018

Fonction F(a1l : T1 ; a2 : T72...) : T
Variable rs : T
Début
Si terminaison(al , a2 ,...) Alors
rs <-...
Sinon
yl <-...
y2 <-...

rs =...fCyl , y2 ,...)
FinSi
Retourner (rs)
Fin

12

4.1

((alg))

4.2

((alg))

Unisciel algoprog — rcOOcours-texte, May 21, 2018

Ordre des appels récursifs

[lustrons 'importance de I'ordre des appels récursifs en prenant I’affichage des entiers.

Entiers par ordre décroissant

Considérons la procédure suivante :

Action decroissant (n : Entier)
Début

| Si (n>@) Alors

| | Afficher (n)

| | decroissant (n - 1)

| FinSi
Fin

Appel de decroissant(2)
affichage de 2

> appel de decroissant(1)
> > affichage de 1
>
>

Vv

> appel de decroissant(Q)
> > 1’algorithme ne fait rien

Entiers par ordre croissant

Invertissons 'ordre de I'affichage et de ’appel récursif :

Action croissant (n : Entier)
Début

| Si (n>0) Alors

| | croissant (n - 1)

| | Afficher (n)

| FinSi
Fin

Appel de croissant(2)

> appel de croissant(1)

> > appel de croissant(0)

> > > 1’algorithme ne fait rien

4.3

((alg))

4.4

((aig))

((alg))

Unisciel algoprog — rcOOcours-texte, May 21, 2018 14

> > affichage de 1
> affichage de 2

Entiers par ordre croissant puis décroissant

La procédure suivante affiche les entiers par ordre croissant puis par ordre décroissant :

Action cdcroissant (n : Entier)
Début

| croissant (n)

| decroissant (n)
Fin

Elle se contente d’appeler la procédure récursive croissant(n) suivie de la procédure
récursive decroissant(n).

Entiers par ordre décroissant puis croissant

De méme, la procédure suivante affiche les entiers par ordre décroissant puis par ordre
croissant :

Action dccroissant (n : Entier)
Début

| decroissant (n)

| croissant (n)
Fin

La procédure étant terminale, elle se simplifie en :

Action dccroissant® (n : Entier)
Début

| Si (n>0) Alors

| | Afficher (n)

| | dccroissantd (n - 1)

| | Afficher (n)

| FinSi
Fin

Unisciel algoprog — rcOOcours-texte, May 21, 2018

Appel de dccroissant(2)
affichage de 2

appel de dccroissant(1)

> affichage de 1

> appel de dccroissant(Q)

> > 1’algorithme ne fait rien
> affichage de 1

affichage de 2

V V V V V V V

15

5.1

5.2

Unisciel algoprog — rcOOcours-texte, May 21, 2018 16
Exemple : Les tours de Hanoi

Le probleme

Contrairement & ce que son nom suggere, le casse-téte appelé les tours de Hanoi ! n’est
pas d’origine asiatique. Il a été inventé a la fin du XIX¢ siecle, en 1883 exactement, par
EDOUARD Lucas, un mathématicien francais spécialiste des jeux.

Des disques percés sont empilés sur un premier piquet (par exemple ici le premier, celui
le plus a gauche). Ils sont placés dans 'ordre des diametres croissants depuis le haut
jusqu’au bas. On doit les enlever un a un pour les replacer dans la méme position sur un
second piquet (par exemple le dernier, celui le plus a droite). Pour cela, on dispose d'un
troisieme piquet auxiliaire (celui du centre) qui peut recevoir provisoirement les disques.

Le transfert des disques doit respecter les trois regles suivantes :
e On ne peut déplacer que le disque se trouvant au sommet d’un piquet.
e On ne peut déplacer qu'un seul disque a la fois.

e Lors d’'un déplacement, il est interdit de poser un disque sur un disque plus petit.

Résolution

On suppose que 'on sait résoudre le probleme pour n — 1 disques.

Pour déplacer n disques de la tige A vers la tige C :
1. On déplace les (n — 1) plus petits de la tige A vers la tige B.
2. On déplace le plus gros disque de la tige A vers la tige C.
3. On déplace les (n — 1) plus petits de la tige B vers la tige C.

1. Voir 'article de Wikipedia, « Tours de Hanoi »

5.3

((aig))

Unisciel algoprog — rcOOcours-texte, May 21, 2018 17

-

. =

- [\
P
A

Les regles sont respectées puisque le plus gros disque est toujours en « bas » d’une tige
et que 'hypothese (de récurrence) nous assure que nous pouvons déplacer la « pile » de
(n — 1) disques en respectant les regles.

Algorithme et Complexité

L’algorithme suivant déplace n disques de la tour orig(ine) vers la tour dest(ination) en
passant par la tour inter(médiaire).

Action hanoi (n : Entier ; orig , dest , inter : Chaine)
Début
| Si (n>0) Alors
| | hanoi (n -1, orig , inter , dest)
| | deplacer (orig , dest)
| | hanoi (n -1, inter , dest , orig)
| FinSi
Fin

((alg))

5.4

((aig))

Unisciel algoprog — rcOOcours-texte, May 21, 2018 18

On compte le nombre de déplacements de disques effectués par I’algorithme invoqué sur
n disques :

Cn) = 0 sin=20
S 1Cn=1)+14C(n—1)=2C(n—1)+1 sinon

d’ou :

C(n) = 2C(n—-1)+1
22C(n—=2)+1)+1=2°C(n—2)+ (2+1)
222C(n—3)+1)+(2+1)=2°C(n—3)+ (2 +2+1)

2"C(0) + (2" T+ 2" 2+ L+ 2+ 1)
" —1

Action deplacer (pieul , pieu2 : Chaine)
Début

| ncoups <- ncoups + 1

| Afficher (ncoups , " -> deplacer de " , pieul , " sur " , pieu2)
Fin

Programme principal

L’algorithme principal est le suivant :

Variable ncoups : Entier
Algorithme pghanoi
Variable n : Entier
Début
| Afficher ("Nombre de disques? ")
| Saisir (n)
| ncoups <- @
| hanoi (n, "A" , "C" , "B")

(Avec trois disques)

Nombre de disques? 3
1 -> deplacer de A sur C
2 -> deplacer de A sur B

Unisciel algoprog — rcOOcours-texte, May 21, 2018

3 -> deplacer de C sur B
4 -> deplacer de A sur C
5 -> deplacer de B sur A
6 -> deplacer de B sur C
7 -> deplacer de A sur C

Unisciel algoprog — rcOOcours-texte, May 21, 2018 20
6 Coit de la récursivité

6.1 Arborescences d’appels

Arbre d’exécution
E Soit une procédure récursive P ne possédant que des appels récursifs simples, en nombre
n, de la forme suivante :
Action P (v : T)
Début
Si terminaison (v) Alors
Instructions®
Sinon
Instructions]

P (phil (v))
P (phiN (v))
InstructionsN + 1
FinSi
Fin

A tout appel P(v)| de \1stinlineP@, on peut associer un arbre A(v) appelé, arbre d’exé-
cution de P pour l'appel P(v), défini récursivement comme suit :

e Si terminaison(v) est vrai, A(v) est un arbre réduit a sa racine :

A(v) = Instructions0

e Si terminaison(v) n’est pas vérifiée, A(v) est égal a :

Instr.1 A(oy(v)) Alpn(v)) Instr.n+1

Si une procédure récursive P présente une récursivité croisée avec une procédure récursive
Q, il faut définir récursivement et en parallele, les arbres d’exécution associés a P et Q pour
des appels donnés.

L’exemple classique est celui de la définition récursive de la suite de FIBONACCI :

(@ig)) Fonction fib

Fonction fib (n : Entier) : Entier
Début

| Si (n=20)

| | Retourner (0)

Unisciel algoprog — rcOOcours-texte, May 21, 2018

| Sinon Si (n=1)

| | Retourner (1)

| Sinon

| | Retourner (fib (n-1) + fib (n-2))
| FinSi

n

La figure représente ’arbre des invocations de fib(4).

21

6.2

Unisciel algoprog — rcOOcours-texte, May 21, 2018 22

Cout de la récursivité

Le cotit de la récursivité est lié a sa réalisation pratique.

Dans le module @[Algorithmes paramétrés], nous avons vu comment se fait I’allocation
de mémoire pour chaque appel de procédure ou de fonction : chaque appel entraine la
création d’une « assiette », on dit aussi changements de contexte — qui décrit les objets
locaux et les parametres de la procédure ou fonction —, qui est liée a cet appel et qui ne
cesse d’exister que quand cet appel particulier se termine.

Si une procédure est appelée récursivement, cela signifie qu'un nouvel appel se produit
avant le retour du précédent. Il peut donc exister simultanément plusieurs « assiettes »
différentes pour la méme procédure et par conséquent plusieurs « instances » (« incar-
nations ») différentes du méme modele d’« assiette ».

Il n’y a aucun rapport, ni aucune communication entre les « assiettes » en dehors du
passage de parametres : ceci signifie que la désignation d’un objet local a une procédure
ou fonction récursive n’est pas ambigué.

Quand un appel récursif se termine, les objets correspondants a I'appel précédent rede-
viennent accessibles, mais ils n’ont pas cessé d’exister entre temps car ils ont été empilés.

Exemple

La figure représente les états successifs de la pile d’exécution, pour une invocation de
fib(4) dans le programme principal main (pour alléger, les cadres d’invocation de main,
fib(4), fib(3), etc., y sont désignés par m, 4, 3, etc.). On remarquera que certaines
invocations sont exécutées plusieurs fois : fib(2) est exécutée deux fois, fib(1) trois fois,
fib(0) deux fois.

1 0
20lz2]lz2]lz2]||2 1 1 i
szl zallzllz2llzll3llz]]3 zllz|lz2]]z2]z
aflallaflalla|lalla[a]la]la]la]la]l 2]lt]s
N Nl | el | e Il i M | i
Remarque

On doit sauvegarder momentanément une « assiette » puis la restaurer. La restauration
se fait dans l'ordre inverse de la sauvegarde.

Remarque
Dans une pile, les objets sont dépilés dans I'ordre inverse de celui ou ils ont été empilés.
C’est pourquoi on utilise la pile pour gérer les algorithmes récursifs.

Remarque
Le coftit de la récursivité est lié au cott de cet empilement et dépilement des « assiettes ».

Unisciel algoprog — rcOOcours-texte, May 21, 2018 23

Cette analyse montre I'intérét d’avoir des algorithmes récursifs avec :

e une profondeur de récursivité (hauteur de pile) faible (si elle est en n?, algorithme
n’est pas utilisable de fagon pratique),

e un nombre d’appels raisonnable.

Unisciel algoprog — rcOOcours-texte, May 21, 2018 24
Récursivité terminale

Rappel de définition

La récursivité terminale est une notion qui peut améliorer nettement les performances de
vos algorithmes. En effet, ’exécution d’un algorithme utilisant la récursivité terminale
est transformée en général en algorithme itératif (plus rapide et moins gourmand en
mémoire) par le compilateur.

Un algorithme est récursif terminal si son appel est le dernier.
Une fonction est récursive terminale si elle renvoie, sans autre calcul, la valeur obtenue
par son appel récursif.

Autrement dit, la valeur retournée est directement la valeur obtenue par I'invocation
récursive, sans qu’il n’y ait d’opération sur cette valeur.

7.2

Unisciel algoprog — rcOOcours-texte, May 21, 2018 25

Exemple : Factoriel récursif terminal

Considérons le calcul récursif du factoriel :

(Gig)) Fonction factoriel (Factoriel récursif)

Fonction factoriel (n : Entier) : Entier
Début
| Si (n<=0) Alors
| | Retourner (1)
| Sinon
| | Retourner (n * factoriel (n - 1))
| FinSi
Fin

Cette invocation n’est pas terminale, puisqu’il y a multiplication par n avant de re-
tourner. Par contre, I'invocation récursive suivante 1’est :

(@o)) _ (Factoriel récursif terminal)

Fonction factorielRt (n : Entier) : Entier
Début
| Retourner (facRt (n, 1))

Fin
Fonction facRt (n : Entier ; a : Entier) : Entier
Début
| Si (n<=0) Alors
| | Retourner (a)
| Sinon
| | Retourner (facRt (n -1, a*n))
| FinSi
Fin

Dans cette version, le deuxieme parametre a, qui vaut initialement 1, joue le role d’un
accumulateur. L’évaluation de facRt(5,1) conduit & la suite d’invocations :

facRt(5,1) -> facRt(4,5) -> facRt(3,20) -> facRt(2,60) -> facRt(1,120)

dont la suite de retours :

facRt(1,120)=120
-> facRt(2,60)=120
-> facRt(3,20)=120
-> facRt(4,5)=120
-> facRt(5,1)=120
-> 120

est en fait une suite d’égalités :
facRt(5,1) = facRt(4,5) = facRt(3,20) = facRt(2,60) = facRt(1,120) = 120

v

((alg))

Unisciel algoprog — rcOOcours-texte, May 21, 2018 26

Fonctionnement de la récursion terminale

Lorsqu’un compilateur détecte un appel récursif terminal, il réutilise le contexte d’exé-
cution courant au lieu d’en empiler un nouveau. Cela est rendu possible par le fait que
I’appel récursif est la derniere instruction exécutée dans ’activation courante et qu’il ne
reste donc rien a faire dans celle-ci apres le retour de cet appel : par conséquent, il n’y a
pas de raison de conserver l’activation courante.

En remplacant son enregistrement au lieu d’en empiler un autre au-dessus de lui, ['uti-
lisation de la pile est considérablement réduite, ce qui, en pratique, se traduit par de
meilleures performances.

On doit donc transformer les fonctions récursives en fonctions récursives terminales a
chaque fois que cela est possible.

La plupart des langages actuels exécutent un programme a récursivité terminale comme
s’il était itératif, c’est-a-dire en espace constant. Sinon, il est facile de transformer une
définition récursive terminale en itération pour optimiser ’exécution. La fonction déré-
cursivée du factoriel est :

Fonction facIter (n : Entier) : Entier
Variable a : Entier
Début

| a<-1

| TantQue (n > @) Faire

| | a<-n=xa

| | n<-n-1

| FinTantQue

| Retourner (a)

8.1

Unisciel algoprog — rcOOcours-texte, May 21, 2018 27

Compléments

Tous les algorithmes récursifs ont en commun un certain nombre de caractéristiques qu’ils
partagent d’ailleurs avec les définitions récursives et les structures de données récursives.

Récursivité directe ou indirecte

La récursivité peut étre directe ou indirecte. Les déclarations suivantes comprennent une
récursivité indirecte :

Action P(x :...)
Début

| ...QC f(Cx))...
Fin
Action Q(vy :...)
Début

Il ...PCegCy))...
Fin

Il faut en retenir que le fait qu’un algorithme soit récursif n’est pas évident a la lecture
du texte de I'algorithme.

8.2

((alg))

Unisciel algoprog — rcOOcours-texte, May 21, 2018 28

Terminaison

Les traitements engendrés par une définition récursive doivent étre finis pour que le calcul
puisse se terminer. Un algorithme P récursif doit prendre la forme générale suivante :
Action P (x :...)
Début
Si B Alors
C
Sinon
D (P)
FinSi
Fin

La condition B et les instructions ¢ sont évalués directement, sans récursivité.

De meme que pour un schéma itératif, on peut démontrer I’achevement d’'un schéma
récursif en définissant, comme quantité de controle, une fonction entiere N de I’ensemble
des variables, et en montrant que chaque exécution de p fait décroitre N. Ceci revient a
montrer que les appels récursifs tendent vers un certain but. La facon la plus commode,
quand elle est possible, consiste a donner a P un parametre entier n, appeler récursivement
P avec la valeur n-1 comme parametre effectif et a utiliser pour B la condition n>e. Il vient
alors :
Action P (n ,...)
Début

Si (n>0) Alors

C
Sinon

D(P(n-1,...))
FinSi
Fin

La valeur initiale de n détermine alors la profondeur de la récursivité, ce qui correspond
au nombre maximum d’appels récursifs du sous-programme.

Dans le cas général, la situation n’est pas aussi favorable et il n’est pas toujours facile
d’exhiber une quantité de controle associée au sous-programme.

L’algorithme suivant, nommée aussi fonction de SYRACUSE, est bien défini et vaut 1 sur
les entiers naturels N.

Fonction collatz (n : Entier) : Entier
Début

| Si (n<=1) Alors

| | Retourner (1)

Unisciel algoprog — rcOOcours-texte, May 21, 2018

Sinon

| Si (Modulo (n, 2) =1) Alors

| | Retourner (collatz (3 *n+ 1))

| Sinon
| | Retourner (collatz (DiveEnt (n, 2)))
| FinSi

|
|
I
I
|
|
| FinSi

29

Unisciel algoprog — rcOOcours-texte, May 21, 2018 30

Non décidabilité de la terminaison

Peut-on écrire un programme qui vérifie automatiquement si un programme donné P
termine quand il est exécuté sur un jeu de données D ?

Entrée Un programme P et un jeu de données D

Sortie vrai si le programme P termine sur le jeu de données D, et Faux sinon

termine, de vérification de la terminaison. A partir de ce programme, on congoit le pro-
gramme Q suivant :

Algorithme Q

Variable rs : Booléen

Début
| rs <- termine (Q)
| TantQue (rs) Faire
| | attendre une seconde
| | rs <- termine (Q)
| FinTantQue
| Retourner (rs)

Supposons que le programme Q — qui ne prend pas de parametre — termine. Donc
termine(Q) renvoie Vrai, la deuxiéme instruction de Q boucle indéfiniment et Q ne ter-
mine pas : contradiction et donc Q termine.

Donc termine(Q)| renvoie \1lstinlineFaux@, la deuxieme instruction de Q ne boucle pas et
Q termine normalement : contradiction.

Par conséquent, il n’existe pas de programme tel que termine, c.-a-d. qui vérifie qu’un
programme termine ou non sur un jeu de données. Le probleme de la terminaison
est indécidable. H

Unisciel algoprog — rcOOcours-texte, May 21, 2018 31

8.4 Résumé : recette de récursivité

La recette de récursivité est la suivante :

1. Assurez-vous que le probleme P peut se décomposer en un ou plusieurs sous-
problemes de méme nature.

2. Identifiez le(s) cas de base qui est le plus petit probleme qui ne se décompose pas
en sous-problémes.

3. Résoudre(P) =
e Si P est un cas de base, résolvez-le directement
e Sinon
— Décomposez P en sous-problemes P1, P2...
— Résolvez récursivement P1, P2...

— Combinez les résultats pour obtenir la solution pour p

Unisciel algoprog — rcOOcours-texte, May 21, 2018 32

Conclusion

La récursivité est une technique dont la mise en oeuvre sur des problemes de nature
récursive aboutit a des solutions élégantes et simples.

La conception d'un algorithme récursif implique la définition du cas général, du ou des
cas triviaux et du ou des parametres de la récursivité. Au fur et a mesure des appels
récursifs, le ou les parametres récursifs doivent s’approcher des valeurs définissant le ou
les cas triviaux.

Une solution itérative (simple) est plus efficace qu'une solution récursive équivalente.

S’il y a plusieurs appels récursifs non consécutifs (tours de Hanoi par exemple), la déré-
cursification (version itérative équivalente) devient difficile.

Il est souvent plus fiable de spécifier une solution récursive, mais par souci d’efficacité, la
solution récursive doit étre écartée au profit d'une solution itérative dans les cas suivants :
e la solution itérative est évidente;

e une étude de la solution récursive montre que la profondeur de récursivité est d’un
ordre supérieur a O(nlgn), et on sait qu’il existe une solution itérative.

On utilise donc la récursivité :
e quand I'exposé du probleme ou la structure de donnés sont récursifs,

e quand il n’y a pas de solution itérative évidente ou meilleure.

	Définition et exemples
	Types de récursivité
	Récursivité simple
	Récursivité multiple
	Récursivité mutuelle
	Récursivité imbriquée
	Récursivité terminale

	Algorithme récursif
	Ordre des appels récursifs
	Entiers par ordre décroissant
	Entiers par ordre croissant
	Entiers par ordre croissant puis décroissant
	Entiers par ordre décroissant puis croissant

	Exemple: Les tours de Hanoï
	Le problème
	Résolution
	Algorithme et Complexité
	Programme principal

	Coût de la récursivité
	Arborescences d'appels
	Coût de la récursivité

	Récursivité terminale
	Rappel de définition
	Exemple: Factoriel récursif terminal
	Fonctionnement de la récursion terminale

	Compléments
	Récursivité directe ou indirecte
	Terminaison
	Non décidabilité de la terminaison
	Résumé: recette de récursivité

	Conclusion

