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1 Définition et exemples 2

2 Types de récursivité 4
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4.4 Entiers par ordre décroissant puis croissant . . . . . . . . . . . . . . . . . 13

5 Exemple : Les tours de Hanöı 15
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Introduction
La récursivité est un des concepts de programmation les plus importants. Le principe de
l’approche récursive est le suivant : ramener le problème à résoudre à un sous-problème
correspondant à une instance « réduite » du problème lui-même. Approcher un problème
de cette façon, un sous-programme s’appelant lui-même, requiert quelque expérience.
Les approches récursives se trouvent dans les parcours d’arbres, les recherches en largeur
d’abord et en profondeur d’abord dans les graphes et les tris.

Ce module définit la récursion et les types de récursivité, donne les propriétés des al-
gorithmes récursifs, présente des exemples classiques d’algorithmes récursifs, analyse le
coût de la récursivité et décrit la récursivité terminale qui est une forme de récursion pour
laquelle les compilateurs modernes savent la reconnâıtre et produire un code optimisé.
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1 Définition et exemples

Éthymologie
Le mot « récursion » vient du latin recursare qui signifie courir en arrière, revenir. L’idée
de réapparition, de retour, est donc étymologiquement liée à la récursivité.

Système récursif
Lorsqu’un système contient une autoréférence (ou une copie de lui-même), on dit
que ce système est récursif.

Exemple
Dans le domaine végétal, le romanesco (hybride broccolo/choux-fleur) est très récursif.

Exemple
L’effet droste (image en abyme).
http://images.math.cnrs.fr/L-effet-Droste.html

Exemple
Les poupées russes ou matriochkas sont des séries de poupées de tailles décroissantes
placées les unes à l’intérieur des autres. Une poupée russe est donc :

• Soit une poupée « pleine » (qu’on ne peut ouvrir).

• Soit une poupée « vide » contenant une poupée russe.

http://fr.wikipedia.org/wiki/Poup%C3%A9e_russe

http://images.math.cnrs.fr/L-effet-Droste.html
http://fr.wikipedia.org/wiki/Poup%C3%A9e_russe
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Exemple
Une façon simple de définir la relation de parenté entre deux personnes est d’énoncer que
x et y sont parents :

• Soit si y est père, mère, fils ou fille de x (ou époux si on inclut la parenté par
alliance).

• Soit s’il existe un individu z tel que x est parent de z et z est parent de y.

Exprimer la même définition de façon non récursive obligerait à recourir à la notion de
« châıne de parenté » et à introduire dans la définition la longueur d’une telle châıne.

Conclusion
La récursivité est un concept très puissant quand on sait décomposer un problème en
un ou plusieurs sous-problèmes qui sont de même nature, mais qui s’appliquent à un
nombre d’objets plus réduit. Il en est de même quand on sait décomposer un objet en
groupes de composants qui présentent les mêmes propriétés que l’objet lui-même et qui
ne contiennent qu’un sous-ensemble de l’objet.

Définition récursive, Algorithme récursif
Une définition récursive est une définition dans laquelle intervient ce que l’on veut
définir. Un algorithme récursif est un algorithme défini en fonction de lui-même. Par
conséquent :

Module récursif
Une procédure (ou fonction) P est dite récursive si son exécution peut provoquer un ou
plusieurs appels (dits récursif) à P.
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2 Types de récursivité

2.1 Récursivité simple

Récursivité simple
Contient un seul appel récursif à P dans le corps d’une procédure récursive P.

Exemple
Un escalier de hauteur h c’est :

• (Vision itérative) Une séquence de h marches

• (Vision récursive) Une marche suivie d’un escalier de hauteur h− 1

Algorithme monterEscalier

Action monterEscalier ( h : Entier )
Début
| Si ( h > 0 ) Alors
| | monterMarche ( )
| | monterEscalier ( h - 1 )
| FinSi

Fin
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2.2 Récursivité multiple

Récursivité multiple
Une récursivité est multiple si il y a plusieurs appels récursifs à P dans le corps d’une
procédure récursive P.

Exemple
La suite de Fibonacci est définie par (n entier naturel) :f0 = 0; f1 = 1

fn = fn−1 + fn−2 pour n ≥ 1

Algorithme fib

Fonction fib ( n : Entier ) : Entier
Début
| Si ( n = 0 )
| | Retourner ( 0 )
| Sinon Si ( n = 1 )
| | Retourner ( 1 )
| Sinon
| | Retourner ( fib ( n - 1 ) + fib ( n - 2 ) )
| FinSi

Fin

Exécution de fib(3)

fib(3) = fib(2)+fib(1)
= (fib(1)+fib(0))+fib(1)
= (1+0)+1
= 2
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2.3 Récursivité mutuelle

Récursivité mutuelle
Une récursivité est mutuelle ou croisée quand une procédure P appelle une procédure
Q qui déclenche un appel récursif à P.

Remarque
La situation est obligatoirement symétrique, puisque Q déclenchera un appel de P, qui
déclenchera à son tour un appel de Q.

Exemple
La parité d’un entier naturel n peut être définie par :

pair(n) =

vrai si n = 0
impair(n− 1) sinon

impair(n) =

faux si n = 0
pair(n− 1) sinon

Algorithmes pair, impair

Fonction pair ( n : Entier ) : Booléen
Début
| Si ( n = 0 ) Alors
| | Retourner ( Vrai )
| Sinon
| | Retourner ( impair ( n - 1 ) )
| FinSi

Fin

Fonction impair ( n : Entier ) : Booléen
Début
| Si ( n = 0 ) Alors
| | Retourner ( Faux )
| Sinon
| | Retourner ( pair ( n - 1 ) )
| FinSi

Fin

Exécution de pair(3)
Les fonctions pair et impair s’invoquent mutuellement :

pair(3)
-> impair(2)
-> pair(1)
-> impair(0)

La dernière invocation renvoie Faux :
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impair(0)=Faux
-> pair(1)=Faux
-> impair(2)=Faux
-> pair(3)=Faux
-> Faux
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2.4 Récursivité imbriquée

Récursivité imbriquée
Une récursivité est imbriquée si une procédure récursive P contient un appel imbriqué.

Exemple
La fonction d’Ackermann (n et p entiers naturels) est définie comme suit :

A(n, p) =


p + 1 si n = 0
A(n− 1, 1) si n > 0 et p = 0
A(n− 1, A(n, p− 1)) sinon

Fonction ackermann

Fonction ackermann ( n , p : Entier ) : Entier
Début
| Si ( n = 0 ) Alors
| | Retourner ( p + 1 )
| Sinon
| | Si ( p = 0 ) Alors
| | | Retourner ( ackermann ( n - 1 , 1 ) )
| | Sinon
| | | Retourner ( ackermann ( n - 1 , ackermann ( n , p - 1 ) )
| | FinSi
| FinSi

Fin

@[rcackermannA1.alg]
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2.5 Récursivité terminale

Récursivité terminale
La récursivité est terminale si l’appel récursif est la dernière instruction et elle est
isolée.

Exemple
L’addition de deux entiers positifs ou nuls peut être définie comme suit :

Fonction plus

Fonction plus ( a , b : Entier ) : Entier
Début
| Si ( b = 0 ) Alors
| | Retourner ( a )
| Sinon
| | Retourner ( plus ( a + 1 , b - 1 ) )
| FinSi

Fin

Exécution de plus(4,2)

plus(4,2)
= plus(5,1)
= plus(6,0)
= 6

Attention
La récursivité n’est pas terminale si l’appel récursif n’est pas la dernière instruction
et/ou elle n’est pas isolée (c.-à-d. qu’elle fait partie d’une expression).

Exemple
Retour sur l’addition.

Fonction plus (non terminale)

Fonction plus ( a , b : Entier ) : Entier
Début
| Si ( b = 0 )
| | Retourner ( a )
| Sinon
| | Retourner ( 1 + plus ( a , b - 1 ) )
| FinSi

Fin

plus(4,2) = 1+plus(4,1) = 1+1+plus(4,0) = 1+1+4=6
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3 Algorithme récursif

Algorithme récursif
Un algorithme est dit récursif si l’expression qui le définit fait appel à lui-même. On
qualifiera de récursif, un appel à une fonction f provoqué par l’évaluation d’un autre
appel à f .

Critères pour un bon algorithme récursif
Deux règles sont à respecter impérativement :

Règle 1 : Un algorithme récursif doit être défini par une expression conditionnelle dont
l’un au moins des cas mène à une expression évaluable sans appel récursif. Une telle
expression est appelée condition d’arrêt ou test d’arrêt ou clause terminale
ou cas de base ou encore cas trivial.

Règle 2 : Il faut s’assurer que pour toute valeur du (ou des) paramètre(s), il suffira
d’un nombre fini d’appels récursifs pour atteindre la condition d’arrêt.

Remarque
Ces deux règles assurent la terminaison de tout appel à un algorithme récursif en empê-
chant la possibilité d’une infinité d’appels récursifs.

Schéma général d’un algorithme récursif

Action R( données X ; résultats Y )
Début
Si terminaison( X ) Alors

Y <-...
Sinon

...
R( entrée_réduite ,...)
...

FinSi
Fin



Unisciel algoprog – rc00cours-texte, May 21, 2018 12

Schéma général d’une fonction récursive

Fonction F( a1 : T1 ; a2 : T2...) : T
Variable rs : T
Début
Si terminaison( a1 , a2 ,...) Alors

rs <-...
Sinon

y1 <-...
y2 <-...
...
rs =...f( y1 , y2 ,...)
...

FinSi
Retourner ( rs )

Fin
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4 Ordre des appels récursifs

Illustrons l’importance de l’ordre des appels récursifs en prenant l’affichage des entiers.

4.1 Entiers par ordre décroissant

Considérons la procédure suivante :

Procédure decroissant

Action decroissant ( n : Entier )
Début
| Si ( n > 0 ) Alors
| | Afficher ( n )
| | decroissant ( n - 1 )
| FinSi

Fin

Exécution pour n=2

Appel de decroissant(2)
> affichage de 2
> appel de decroissant(1)
> > affichage de 1
> > appel de decroissant(0)
> > > l’algorithme ne fait rien

4.2 Entiers par ordre croissant

Invertissons l’ordre de l’affichage et de l’appel récursif :

Procédure croissant

Action croissant ( n : Entier )
Début
| Si ( n > 0 ) Alors
| | croissant ( n - 1 )
| | Afficher ( n )
| FinSi

Fin

Exécution pour n=2

Appel de croissant(2)
> appel de croissant(1)
> > appel de croissant(0)
> > > l’algorithme ne fait rien
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> > affichage de 1
> affichage de 2

4.3 Entiers par ordre croissant puis décroissant

La procédure suivante affiche les entiers par ordre croissant puis par ordre décroissant :

Procédure cdcroissant

Action cdcroissant ( n : Entier )
Début
| croissant ( n )
| decroissant ( n )

Fin

Explication
Elle se contente d’appeler la procédure récursive croissant(n) suivie de la procédure
récursive decroissant(n).

4.4 Entiers par ordre décroissant puis croissant

De même, la procédure suivante affiche les entiers par ordre décroissant puis par ordre
croissant :

Procédure dccroissant

Action dccroissant ( n : Entier )
Début
| decroissant ( n )
| croissant ( n )

Fin

La procédure étant terminale, elle se simplifie en :

Procédure dccroissant (simplifiée)

Action dccroissant0 ( n : Entier )
Début
| Si ( n > 0 ) Alors
| | Afficher ( n )
| | dccroissant0 ( n - 1 )
| | Afficher ( n )
| FinSi

Fin
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Exécution pour n=2

Appel de dccroissant(2)
> affichage de 2
> appel de dccroissant(1)
> > affichage de 1
> > appel de dccroissant(0)
> > > l’algorithme ne fait rien
> > affichage de 1
> affichage de 2
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5 Exemple : Les tours de Hanöı

5.1 Le problème

Contrairement à ce que son nom suggère, le casse-tête appelé les tours de Hanöı 1 n’est
pas d’origine asiatique. Il a été inventé à la fin du XIXe siècle, en 1883 exactement, par
Edouard Lucas, un mathématicien français spécialiste des jeux.

Des disques percés sont empilés sur un premier piquet (par exemple ici le premier, celui
le plus à gauche). Ils sont placés dans l’ordre des diamètres croissants depuis le haut
jusqu’au bas. On doit les enlever un à un pour les replacer dans la même position sur un
second piquet (par exemple le dernier, celui le plus à droite). Pour cela, on dispose d’un
troisième piquet auxiliaire (celui du centre) qui peut recevoir provisoirement les disques.

Le transfert des disques doit respecter les trois règles suivantes :

• On ne peut déplacer que le disque se trouvant au sommet d’un piquet.

• On ne peut déplacer qu’un seul disque à la fois.

• Lors d’un déplacement, il est interdit de poser un disque sur un disque plus petit.

5.2 Résolution

Hypothèse
On suppose que l’on sait résoudre le problème pour n− 1 disques.

Principe
Pour déplacer n disques de la tige A vers la tige C :

1. On déplace les (n− 1) plus petits de la tige A vers la tige B.

2. On déplace le plus gros disque de la tige A vers la tige C.

3. On déplace les (n− 1) plus petits de la tige B vers la tige C.

1. Voir l’article de Wikipedia, « Tours de Hanöı »
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Validité
Les règles sont respectées puisque le plus gros disque est toujours en « bas » d’une tige
et que l’hypothèse (de récurrence) nous assure que nous pouvons déplacer la « pile » de
(n− 1) disques en respectant les règles.

5.3 Algorithme et Complexité

L’algorithme suivant déplace n disques de la tour orig(ine) vers la tour dest(ination) en
passant par la tour inter(médiaire).

Algorithme hanoi

Action hanoi ( n : Entier ; orig , dest , inter : Chaîne )
Début
| Si ( n > 0 ) Alors
| | hanoi ( n - 1 , orig , inter , dest )
| | deplacer ( orig , dest )
| | hanoi ( n - 1 , inter , dest , orig )
| FinSi

Fin



Unisciel algoprog – rc00cours-texte, May 21, 2018 18

Complexité
On compte le nombre de déplacements de disques effectués par l’algorithme invoqué sur
n disques :

C(n) =

0 si n = 0
C(n− 1) + 1 + C(n− 1) = 2C(n− 1) + 1 sinon

d’où :

C(n) = 2C(n− 1) + 1
= 2(2C(n− 2) + 1) + 1 = 22C(n− 2) + (2 + 1)
= 22(2C(n− 3) + 1) + (2 + 1) = 23C(n− 3) + (22 + 2 + 1)
...

= 2nC(0) + (2n−1 + 2n−2 + ... + 2 + 1)
= 2n − 1

Algorithme deplacer

Action deplacer ( pieu1 , pieu2 : Chaîne )
Début
| ncoups <- ncoups + 1
| Afficher ( ncoups , " -> deplacer de " , pieu1 , " sur " , pieu2 )

Fin

5.4 Programme principal

L’algorithme principal est le suivant :

Algorithme

Variable ncoups : Entier
Algorithme pghanoi
Variable n : Entier
Début
| Afficher ( "Nombre de disques? " )
| Saisir ( n )
| ncoups <- 0
| hanoi ( n , "A" , "C" , "B" )

Fin

Résultat d’exécution
(Avec trois disques)

Nombre de disques? 3
1 -> deplacer de A sur C
2 -> deplacer de A sur B
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3 -> deplacer de C sur B
4 -> deplacer de A sur C
5 -> deplacer de B sur A
6 -> deplacer de B sur C
7 -> deplacer de A sur C
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6 Coût de la récursivité

6.1 Arborescences d’appels

Arbre d’exécution
Soit une procédure récursive P ne possédant que des appels récursifs simples, en nombre
n, de la forme suivante :

Action P ( v : T )
Début
Si terminaison ( v ) Alors

Instructions0
Sinon

Instructions1
P ( phi1 ( v ) )
...
P ( phiN ( v ) )
InstructionsN + 1

FinSi
Fin

A tout appel P(v)| de \lstinlineP@, on peut associer un arbreA(v) appelé, arbre d’exé-
cution de P pour l’appel P(v), défini récursivement comme suit :

• Si terminaison(v) est vrai, A(v) est un arbre réduit à sa racine :

A(v) = Instructions0

• Si terminaison(v) n’est pas vérifiée, A(v) est égal à :

Remarque
Si une procédure récursive P présente une récursivité croisée avec une procédure récursive
Q, il faut définir récursivement et en parallèle, les arbres d’exécution associés à P et Q pour
des appels donnés.

Exemple
L’exemple classique est celui de la définition récursive de la suite de Fibonacci :

Fonction fib

Fonction fib ( n : Entier ) : Entier
Début
| Si ( n = 0 )
| | Retourner ( 0 )
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| Sinon Si ( n = 1 )
| | Retourner ( 1 )
| Sinon
| | Retourner ( fib ( n - 1 ) + fib ( n - 2 ) )
| FinSi

Fin

Arbre d’invocation de fib(4)
La figure représente l’arbre des invocations de fib(4).
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6.2 Coût de la récursivité

Le coût de la récursivité est lié à sa réalisation pratique.

Dans le module @[Algorithmes paramétrés], nous avons vu comment se fait l’allocation
de mémoire pour chaque appel de procédure ou de fonction : chaque appel entrâıne la
création d’une « assiette », on dit aussi changements de contexte – qui décrit les objets
locaux et les paramètres de la procédure ou fonction –, qui est liée à cet appel et qui ne
cesse d’exister que quand cet appel particulier se termine.

Si une procédure est appelée récursivement, cela signifie qu’un nouvel appel se produit
avant le retour du précédent. Il peut donc exister simultanément plusieurs « assiettes »
différentes pour la même procédure et par conséquent plusieurs « instances » (« incar-
nations ») différentes du même modèle d’« assiette ».

Il n’y a aucun rapport, ni aucune communication entre les « assiettes » en dehors du
passage de paramètres : ceci signifie que la désignation d’un objet local à une procédure
ou fonction récursive n’est pas ambiguë.

Quand un appel récursif se termine, les objets correspondants à l’appel précédent rede-
viennent accessibles, mais ils n’ont pas cessé d’exister entre temps car ils ont été empilés.

Exemple
La figure représente les états successifs de la pile d’exécution, pour une invocation de
fib(4) dans le programme principal main (pour alléger, les cadres d’invocation de main,
fib(4), fib(3), etc., y sont désignés par m, 4, 3, etc.). On remarquera que certaines
invocations sont exécutées plusieurs fois : fib(2) est exécutée deux fois, fib(1) trois fois,
fib(0) deux fois.

Remarque
On doit sauvegarder momentanément une « assiette » puis la restaurer. La restauration
se fait dans l’ordre inverse de la sauvegarde.

Remarque
Dans une pile, les objets sont dépilés dans l’ordre inverse de celui où ils ont été empilés.
C’est pourquoi on utilise la pile pour gérer les algorithmes récursifs.

Remarque
Le coût de la récursivité est lié au coût de cet empilement et dépilement des « assiettes ».
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Conclusion
Cette analyse montre l’intérêt d’avoir des algorithmes récursifs avec :

• une profondeur de récursivité (hauteur de pile) faible (si elle est en n2, l’algorithme
n’est pas utilisable de façon pratique),

• un nombre d’appels raisonnable.
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7 Récursivité terminale

7.1 Rappel de définition

La récursivité terminale est une notion qui peut améliorer nettement les performances de
vos algorithmes. En effet, l’exécution d’un algorithme utilisant la récursivité terminale
est transformée en général en algorithme itératif (plus rapide et moins gourmand en
mémoire) par le compilateur.

Algorithme récursif terminal
Un algorithme est récursif terminal si son appel est le dernier.
Une fonction est récursive terminale si elle renvoie, sans autre calcul, la valeur obtenue
par son appel récursif.

Autrement dit, la valeur retournée est directement la valeur obtenue par l’invocation
récursive, sans qu’il n’y ait d’opération sur cette valeur.
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7.2 Exemple : Factoriel récursif terminal

Considérons le calcul récursif du factoriel :

Fonction factoriel (Factoriel récursif)

Fonction factoriel ( n : Entier ) : Entier
Début
| Si ( n <= 0 ) Alors
| | Retourner ( 1 )
| Sinon
| | Retourner ( n * factoriel ( n - 1 ) )
| FinSi

Fin

Explication
Cette invocation n’est pas terminale, puisqu’il y a multiplication par n avant de re-
tourner. Par contre, l’invocation récursive suivante l’est :

Fonction factorielRt (Factoriel récursif terminal)

Fonction factorielRt ( n : Entier ) : Entier
Début
| Retourner ( facRt ( n , 1 ) )

Fin
Fonction facRt ( n : Entier ; a : Entier ) : Entier
Début
| Si ( n <= 0 ) Alors
| | Retourner ( a )
| Sinon
| | Retourner ( facRt ( n - 1 , a * n ) )
| FinSi

Fin

Explication
Dans cette version, le deuxième paramètre a, qui vaut initialement 1, joue le rôle d’un
accumulateur. L’évaluation de facRt(5,1) conduit à la suite d’invocations :

facRt(5,1) -> facRt(4,5) -> facRt(3,20) -> facRt(2,60) -> facRt(1,120)

dont la suite de retours :

facRt(1,120)=120
-> facRt(2,60)=120
-> facRt(3,20)=120
-> facRt(4,5)=120
-> facRt(5,1)=120
-> 120

est en fait une suite d’égalités :

facRt(5,1) = facRt(4,5) = facRt(3,20) = facRt(2,60) = facRt(1,120) = 120
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7.3 Fonctionnement de la récursion terminale

Lorsqu’un compilateur détecte un appel récursif terminal, il réutilise le contexte d’exé-
cution courant au lieu d’en empiler un nouveau. Cela est rendu possible par le fait que
l’appel récursif est la dernière instruction exécutée dans l’activation courante et qu’il ne
reste donc rien à faire dans celle-ci après le retour de cet appel : par conséquent, il n’y a
pas de raison de conserver l’activation courante.

En remplaçant son enregistrement au lieu d’en empiler un autre au-dessus de lui, l’uti-
lisation de la pile est considérablement réduite, ce qui, en pratique, se traduit par de
meilleures performances.

Conclusion
On doit donc transformer les fonctions récursives en fonctions récursives terminales à
chaque fois que cela est possible.

Remarque
La plupart des langages actuels exécutent un programme à récursivité terminale comme
s’il était itératif, c’est-à-dire en espace constant. Sinon, il est facile de transformer une
définition récursive terminale en itération pour optimiser l’exécution. La fonction déré-
cursivée du factoriel est :

Factoriel itératif

Fonction facIter ( n : Entier ) : Entier
Variable a : Entier
Début
| a <- 1
| TantQue ( n > 0 ) Faire
| | a <- n * a
| | n <- n - 1
| FinTantQue
| Retourner ( a )

Fin
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8 Compléments

Tous les algorithmes récursifs ont en commun un certain nombre de caractéristiques qu’ils
partagent d’ailleurs avec les définitions récursives et les structures de données récursives.

8.1 Récursivité directe ou indirecte

La récursivité peut être directe ou indirecte. Les déclarations suivantes comprennent une
récursivité indirecte :

Action P( x :...)
Début
| ...Q( f( x ) )...

Fin
Action Q( y :...)
Début
| ...P( g( y ) )...

Fin

Il faut en retenir que le fait qu’un algorithme soit récursif n’est pas évident à la lecture
du texte de l’algorithme.
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8.2 Terminaison

Les traitements engendrés par une définition récursive doivent être finis pour que le calcul
puisse se terminer. Un algorithme P récursif doit prendre la forme générale suivante :

Action P ( x :...)
Début
Si B Alors

C
Sinon

D ( P )
FinSi

Fin

La condition B et les instructions C sont évalués directement, sans récursivité.

Remarque
De même que pour un schéma itératif, on peut démontrer l’achèvement d’un schéma
récursif en définissant, comme quantité de contrôle, une fonction entière N de l’ensemble
des variables, et en montrant que chaque exécution de P fait décrôıtre N . Ceci revient à
montrer que les appels récursifs tendent vers un certain but. La façon la plus commode,
quand elle est possible, consiste à donner à P un paramètre entier n, appeler récursivement
P avec la valeur n-1 comme paramètre effectif et à utiliser pour B la condition n>0. Il vient
alors :

Action P ( n ,...)
Début
Si ( n > 0 ) Alors

C
Sinon

D ( P ( n - 1 ,...) )
FinSi

Fin

La valeur initiale de n détermine alors la profondeur de la récursivité, ce qui correspond
au nombre maximum d’appels récursifs du sous-programme.

Remarque
Dans le cas général, la situation n’est pas aussi favorable et il n’est pas toujours facile
d’exhiber une quantité de contrôle associée au sous-programme.

Exemple
L’algorithme suivant, nommée aussi fonction de Syracuse, est bien défini et vaut 1 sur
les entiers naturels N.

Fonction collatz

Fonction collatz ( n : Entier ) : Entier
Début
| Si ( n <= 1 ) Alors
| | Retourner ( 1 )
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| Sinon
| | Si ( Modulo ( n , 2 ) = 1 ) Alors
| | | Retourner ( collatz ( 3 * n + 1 ) )
| | Sinon
| | | Retourner ( collatz ( DivEnt ( n , 2 ) ) )
| | FinSi
| FinSi

Fin
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8.3 Non décidabilité de la terminaison

Peut-on écrire un programme qui vérifie automatiquement si un programme donné P

termine quand il est exécuté sur un jeu de données D ?

Entrée Un programme P et un jeu de données D

Sortie Vrai si le programme P termine sur le jeu de données D, et Faux sinon

Preuve : (de la non décidabilité) Supposons qu’il existe un tel programme, nommé
termine, de vérification de la terminaison. A partir de ce programme, on conçoit le pro-
gramme Q suivant :

Algorithme Q
Variable rs : Booléen
Début
| rs <- termine ( Q )
| TantQue ( rs ) Faire
| | attendre une seconde
| | rs <- termine ( Q )
| FinTantQue
| Retourner ( rs )

Fin

Supposons que le programme Q – qui ne prend pas de paramètre – termine. Donc
termine(Q) renvoie Vrai, la deuxième instruction de Q boucle indéfiniment et Q ne ter-
mine pas : contradiction et donc Q termine.

Donc termine(Q)| renvoie \lstinlineFaux@, la deuxième instruction de Q ne boucle pas et
Q termine normalement : contradiction.

Par conséquent, il n’existe pas de programme tel que termine, c.-à-d. qui vérifie qu’un
programme termine ou non sur un jeu de données. Le problème de la terminaison
est indécidable. �
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8.4 Résumé : recette de récursivité

La recette de récursivité est la suivante :

1. Assurez-vous que le problème P peut se décomposer en un ou plusieurs sous-
problèmes de même nature.

2. Identifiez le(s) cas de base qui est le plus petit problème qui ne se décompose pas
en sous-problèmes.

3. Résoudre(P) =

• Si P est un cas de base, résolvez-le directement

• Sinon

— Décomposez P en sous-problèmes P1, P2...

— Résolvez récursivement P1, P2...

— Combinez les résultats pour obtenir la solution pour P
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9 Conclusion

La récursivité est une technique dont la mise en oeuvre sur des problèmes de nature
récursive aboutit à des solutions élégantes et simples.

La conception d’un algorithme récursif implique la définition du cas général, du ou des
cas triviaux et du ou des paramètres de la récursivité. Au fur et à mesure des appels
récursifs, le ou les paramètres récursifs doivent s’approcher des valeurs définissant le ou
les cas triviaux.

Une solution itérative (simple) est plus efficace qu’une solution récursive équivalente.

S’il y a plusieurs appels récursifs non consécutifs (tours de Hanöı par exemple), la déré-
cursification (version itérative équivalente) devient difficile.

Il est souvent plus fiable de spécifier une solution récursive, mais par souci d’efficacité, la
solution récursive doit être écartée au profit d’une solution itérative dans les cas suivants :

• la solution itérative est évidente ;

• une étude de la solution récursive montre que la profondeur de récursivité est d’un
ordre supérieur à O(n lg n), et on sait qu’il existe une solution itérative.

On utilise donc la récursivité :

• quand l’exposé du problème ou la structure de donnés sont récursifs,

• quand il n’y a pas de solution itérative évidente ou meilleure.
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