
Gestion dynamique de mémoire [mm]
Support de Cours

Karine Zampieri, Stéphane Rivière

Unisciel algoprog Version 20 mai 2018

Table des matières

1 Gestion dynamique de mémoire 2
1.1 Gestion dynamique de mémoire . 2
1.2 Allocation dynamique de mémoire . 3
1.3 Libération dynamique de mémoire . 4
1.4 Exemples . 5
1.5 Création et destruction de tableaux . 6
1.6 La désallocation n’est pas simple . 8
1.7 Les schémas mémoire . 9

2 Clonage d’objets : recopie et affectation 10
2.1 Constructeur de recopie . 10
2.2 Opérateur d’affectation . 10
2.3 Initialisation ou Affectation ? . 11
2.4 Constructions et Destructeur (Juillet 2017) 12

3 Forme canonique de Coplien 14

alg - Gestion dynamique de mémoire

Mots-Clés Gestion dynamique de mémoire �
Requis Structuration de l’information, Classes �
Difficulté • • ◦ (1 h) �

Introduction
Ce module explique la gestion dynamique de la mémoire, aborde le clonage d’objets
(recopie et affectation) et donne la forme canonique de Coplien.

1

Unisciel algoprog – mm00cours-texte, May 20, 2018 2

1 Gestion dynamique de mémoire

1.1 Gestion dynamique de mémoire

Le langage dispose de primitives adaptés à la gestion dynamique de la mémoire.

L’allocation dynamique de mémoire
La primitive d’allocation réclame des blocs de mémoire dans la zone de la mémoire
appelée le tas (heap, en anglais) (dit aussi mémoire dynamique ou RAM vive) et la
met à la disposition du programme. Cette opération est dite allocation dynamique
(en opposition à l’allocation statique) parce que l’espace mémoire est réservé lors de
l’exécution du programme (run time) et non lors de la compilation. Par analogie, les
entités créées de cette façon sont dites dynamiques. La durée de vie d’une entité créée
dynamiquement n’est pas limitée à la portée dans laquelle elle a été créée : elle existe
depuis son point de création jusqu’à sa destruction ou jusqu’à la fin du programme.

La libération dynamique
Lorsque celle-ci est devenue inutile, la primitive de libération permet de détruire l’entité
dynamique : la mémoire allouée est libérée et redonnée au système.

Volume du tas
Il dépend de l’implémentation. Certaines implémentations permettent au programmeur
de contrôler la taille du tas. Ces programmes sont capables de vider le tas, s’ils réalisent
de grosses demandes de blocs mémoire, et qu’ils ne restituent pas au système lorsqu’ils
ne sont pas utilisés. Un programme devrait être conçu pour faire face à la situation où
le tas est épuisé puisque tous les langages ne fournissent pas par défaut un gestionnaire
du tas.

Unisciel algoprog – mm00cours-texte, May 20, 2018 3

1.2 Allocation dynamique de mémoire

En algorithmique, on suppose que le système possède une place mémoire sans limite et
que l’instruction d’allocation se termine correctement. Dans les langages de programma-
tion, des mécanismes existent pour savoir si le système d’exploitation a échoué dans son
essai de réservation d’espace mémoire pour la variable pointée.

alg : Allocation d’un élément

Allouer(p)

Explication
Réserve une zone mémoire d’une taille correspondant à la taille du sous-type du pointeur
p de type T (c.-à-d. Taille(T)) et mémorise l’adresse mémoire de cette zone dans la
variable pointeur p.

alg : Allocation d’un tableau

Allouer(p,nelems)

Explication
Réserve une zone de mémoire de type T[nelems], met l’adresse correspondante dans p et
initialise chacun des éléments du tableau dynamique à la valeur nulle du type T c.-à-d. à
T().

Unisciel algoprog – mm00cours-texte, May 20, 2018 4

1.3 Libération dynamique de mémoire

Libération de mémoire
Elle ne doit être appliquée qu’à des pointeurs pointant sur une zone allouée dynamique-
ment.

alg : Libération d’un élément

Libérer(p)

Explication
Libère et restitue au système d’exploitation la zone mémoire pointée par le pointeur p et
rend indéterminée la valeur de p.

alg : Libération d’un tableau

Libérer(p [])

Explication
Libère la zone mémoire allouée au pointeur p. Ce sont les crochets qui indique au système
que l’adresse dans p réfère une structure tabulaire.

Libération n’implique pas initialisation à nil
Lors de la libération mémoire, la variable pointeur n’est pas initialisée à la valeur Nil.
Elle contient toujours la même adresse mémoire mais celle-ci ne correspond plus à celle
d’une variable pointée puisque la variable pointée a été rendue au système d’exploita-
tion. L’utilisation de cette variable pointée provoque une erreur d’exécution avec arrêt
immédiat de l’algorithme.

Unisciel algoprog – mm00cours-texte, May 20, 2018 5

1.4 Exemples

Exemple Pseudo-code

Variable p : Pointeur Réel
Début
| Allouer(p) // allocation de 4 octets
| p^ <- 6.1235 // attribution d’une valeur
| Libérer(p) // libération de la zone
Fin

Attention
La libération d’une zone pointée peut avoir un effet de bord lorsque cette zone est pointée
par d’autres pointeurs, ou correspond à une variable.

Exemple Pseudo-code

Variable p, q : Pointeur Réel
Début
| Allouer(p) // allocation d’une zone dans le TAS
| p^ <- 6.1235 // attribution d’une valeur
| q <- p // q pointe vers la même zone que p
| Libérer(p) // libération de la zone pointée par p
| Afficher(q^) // OUPS... affiche n’importe quoi
Fin

Unisciel algoprog – mm00cours-texte, May 20, 2018 6

1.5 Création et destruction de tableaux

Création de tableaux
L’utilisation de tableaux nécessite un constructeur par défaut, c.-à-d. un constructeur
pouvant ne prendre aucun paramètre lors de son invocation. Un tel constructeur peut :

• Ne prendre effectivement aucun paramètre.

• Avoir des paramètres qui acceptent tous une valeur par défaut.

Exemple
Le constructeur Point::Point(int x=0,int y=0) est un constructeur par défaut.

Le pourquoi
Le besoin d’un constructeur par défaut est lié à la syntaxe de construction des tableaux.
Par exemple, pour un tableau à une dimension :

TElement idObjet[tailleTableau];

Comme vous pouvez le constater, il n’y a pas de place pour des paramètres de construc-
tion. La construction doit donc se faire sans paramètre, d’où la nécessité d’un construc-
teur par défaut.

Comment faire sans constructeur par défaut
Que faire si l’on doit créer un tableau d’objets sans constructeur par défaut ? La solution
est un peu alambiquée :

• On créé un tableau de pointeurs.

• On appelle le constructeur souhaité sur chacun des pointeurs.

Résumé : Les différents types de tableaux
A partir d’une même classe T, on peut avoir :

Unisciel algoprog – mm00cours-texte, May 20, 2018 7

Unisciel algoprog – mm00cours-texte, May 20, 2018 8

1.6 La désallocation n’est pas simple

La libération mémoire est nécessaire pour ne pas épuiser le TAS et elle est à réaliser
dès qu’une zone n’a plus d’utilité. Mais la gérer n’est pas une opération simple. Certains
langages de programmation (Java, Python, Lisp...) la gèrent automatiquement.

Ramasse-miettes
La gestion automatique de récupération de mémoire est nommée ramasse-miettes (gar-
bage collector en anglais).

Une stratégie prudente
Il est très important de réfléchir sur les variables et sur la libération de la mémoire
dynamique. Les erreurs liées à ces mécanismes sont souvent très difficiles à cerner. Une
stratégie prudente est de toujours se poser les questions suivantes :

• Est-ce que je libère tout ce que j’ai alloué ?

• Tous les pointeurs sont-ils initialisés ?

• Est-ce que je libère plusieurs fois certaines données ?

• La mémoire dynamique est-elle initialisée correctement ?

La modularité et les types abstraits, et surtout les constructeurs et destructeurs, facilitent
ces manipulations et permettent de cacher les détails délicats. Tout ce qu’un constructeur
alloue doit être libéré par le destructeur. Le couplage des constructeurs et destructeurs
avec les allocations et libérations est l’une des techniques qui permettent de limiter les
risques d’erreurs durant l’exécution d’un programme.

Unisciel algoprog – mm00cours-texte, May 20, 2018 9

1.7 Les schémas mémoire

Il est primordial de connâıtre l’état des variables en cours d’exécution d’un algorithme
grâce à un schéma mémoire.

Schéma mémoire d’un algorithme
Représente l’ensemble des variables et de leurs valeurs à une étape précise de son dérou-
lement.

Utilité d’un schéma mémoire
Un schéma mémoire délimite trois parties distinctes :

• Le nom de l’algorithme.

• La partie des variables où toutes les variables définies seront représentées par :

— Une valeur (ou par ? si la variable n’a pas encore de valeur) pour les variables
de type primitif.

— Une flèche (pointant sur une case dessinée dans la partie droite u schéma)
pour les variables de type Pointeur.

• La partie des instances où chaque case aura été créée par l’allocation : il y a autant
de cases à représenter qu’il y a d’allocations dans l’algorithme.

Erreurs courantes
Les erreurs à éviter :

• Oublier de représenter une variable.

• Donner une mauvaise valeur à une variable.

• Représenter les instances sans une case associée.

• Oublier de préciser l’étape (au cours du déroulement de l’algorithme) représentée
par le schéma mémoire.

Unisciel algoprog – mm00cours-texte, May 20, 2018 10

2 Clonage d’objets : recopie et affectation

Recopier un objet dans un autre est opération assez fréquente. Deux fonctionnalités y
sont dédiées en C++ : le constructeur par recopie et l’opérateur d’affectation.

2.1 Constructeur de recopie

Motivation
Le constructeur par recopie est très important car il permet d’initialiser un objet
par clonage d’un autre. Attention, j’ai bien dit initialiser, ce qui signifie que l’objet est
en cours de construction. En particulier, le constructeur par recopie est invoqué dès lors
que l’on passe un objet par valeur à une fonction ou une méthode.

Syntaxe

K::K(const K& o);

Explication
Syntaxe du constructeur par recopie d’une classe K. Attention ! Il est extrêmement im-
portant de passer l’objet recopié par référence sous peine d’entrainer un appel récursif
infini !

En l’absence de constructeur de recopie
Si vous ne fournissez pas explicitement de constructeur par recopie, le compilateur en
génère automatiquement un pour vous. Celui-ci effectue une recopie binaire optimisée de
votre objet... ce qui est parfait si celui-ci ne contient que des éléments simples.

En revanche, si votre objet contient des pointeurs, ce sont les valeurs des pointeurs qui
vont être copiées et non pas les variables pointées, ce qui dans de nombreux cas, conduira
directement à la catastrophe.

Quand doit on fournir un constructeur de recopie ?
Vous devez fournir un constructeur de recopie dès lors que le clonage d’un objet par
recopie binaire brute peut entrâıner un dysfonctionnement de votre classe, c’est à dire,
en particulier :

• Utilisation de mémoire dynamique.

• Utilisation de ressources systèmes (fichiers, sockets, etc.).

2.2 Opérateur d’affectation

Mise en place
L’opérateur d’affectation et le constructeur de recopie sont très proches dans le sens où ils
sont requis dans les mêmes circonstances et qu’ils effectuent la même opération : cloner
un objet dans un autre. Il y a tout de même une différence fondamentale : « l’opérateur

Unisciel algoprog – mm00cours-texte, May 20, 2018 11

d’affectation écrase le contenu d’un objet déjà existant et donc totalement construit ».
Ce qui signifie que dans la majorité des cas, il faudra commencer par « nettoyer » l’objet
à la manière d’un constructeur avant d’effectuer l’opération de clonage dessus.

Syntaxe

K& K::operator=(const K& o);

Explication
Syntaxe de l’opérateur d’affectation d’une classe K.

2.3 Initialisation ou Affectation ?

Règle : Initialisation ou Affectation
Il est parfois délicat de savoir si l’on a affaire à une affectation ou une initialisation
car la syntaxe du signe « = » peut être trompeuse. Il existe pourtant une règle simple :
Toute opération d’initialisation ou d’affectation dans une déclaration est l’affaire d’un
constructeur.

Résumé
Le tableau suivant résume quelques cas qui doivent être lus séquentiellement et où T et
U sont des classes quelconques :

Unisciel algoprog – mm00cours-texte, May 20, 2018 12

2.4 Constructions et Destructeur (Juillet 2017)

Constructeur sans paramètre
Si l’on ne définit pas de constructeur dans une classe, le constructeur par défaut se
contente de réserver l’espace mémoire pour l’objet et ses données membres mais elles ne
sont pas initialisées. Pour des pointeurs, il convient donc d’initialiser les variables.

Constructeurs avec paramètres
Pour des tableaux dynamiques, on peut donc définir un constructeur avec paramètres
qui s’occupe de la création et de l’initialisation.

Constructeurs et initialiseurs (1)
Dans le cas de constructeurs multiples de même nombre de paramètres, c’est le type des
paramètres qui détermine le constructeur appelé.

Constructeurs et initialiseurs (2)
Dans le cas de constantes ou de références, l’initialiseur doit les initialiser. Exemple :

#include <iostream>
using namespace std;
class A
{
private:

const int ci1 = 7; // initialisation a la declaration
const int ci2; // ou utilisation d’un initialiseur
double& cf; // initialiseur obligatoire

public:
A(double& f): ci2(5), cf(f) {}
A(int i, double& f) : ci2(i), cf(f){}
void afficher(){ cout<<ci1<<" "<<ci2<<" "<<cf<<endl; }

};
int main()
{

double f1 = 5.5;
A a1(f1);
f1 += 100; // modification du double d’origine
a1.afficher(); // 7, 5, 105.50

double f2 = 22.25;
A a2(100, f2);
f2 *= 100; // modification du double d’origine
a2.afficher(); // 7, 100, 2225.0

}

Constructeur et copie d’objet
Le constructeur de recopie effectue, par défaut, une copie membre à membre. Paf consé-
quent, dans le cas de tableaux dynamiques (par exemple), il faut donc s’il s’occupe de
l’allocation mémoire, sous peine de pointer vers les mêmes éléments.

Unisciel algoprog – mm00cours-texte, May 20, 2018 13

Affectation et copie d’objet
Elle pose le même cas de problème que le constructeur de recopie en cas d’allocation
dynamique de mémoire.

Destructeur
Il sert à libérer la mémoire allouée. Il ne peut n’y en avoir qu’un par classe. Le destructeur
est appelé automatiquement à l’issue du bloc dans lequel a été créé l’objet. Et donc, si
des allocations dynamiques ont été opérées, il faut écrire son propre destructeur.

Unisciel algoprog – mm00cours-texte, May 20, 2018 14

3 Forme canonique de Coplien

On dit qu’une classe T est sous forme canonique de Coplien si elle fournit les éléments
suivants :

Si ces éléments sont codés correctement, alors l’utilisation de cette classe vis à vis de la
mémoire est sécurisé. Dès qu’une classe utilise de la mémoire dynamique ou des ressources
critiques, il est indispensable de la mettre sous forme canonique de Coplien.

	Gestion dynamique de mémoire
	Gestion dynamique de mémoire
	Allocation dynamique de mémoire
	Libération dynamique de mémoire
	Exemples
	Création et destruction de tableaux
	La désallocation n'est pas simple
	Les schémas mémoire

	Clonage d'objets: recopie et affectation
	Constructeur de recopie
	Opérateur d'affectation
	Initialisation ou Affectation?
	Constructions et Destructeur (Juillet 2017)

	Forme canonique de Coplien

