Gestion dynamique de mémoire [mm]
Support de Cours

Karine Zampieri, Stéphane Riviere

unie UNIVERSITE
i HAUTE-ALSACE

Unisciel °“ algoprog Version 20 mai 2018

Table des matieres

1 Gestion dynamique de mémoire 2
1.1 Gestion dynamique de mémoireo 2
1.2 Allocation dynamique de mémoire 3
1.3 Libération dynamique de mémoire 4
1.4 Exemples)
1.5 Création et destruction de tableaux 6
1.6 La désallocation n’est pas simple 8
1.7 Les schémas mémoire 9
2 Clonage d’objets : recopie et affectation 10
2.1 Constructeur de recopie Lo 10
2.2 Opérateur d’affectation 10
2.3 Initialisation ou Affectation?. L. 11
2.4 Constructions et Destructeur (Juillet 2017) 12
3 Forme canonique de Coplien 14

alg - Gestion dynamique de mémoire

Mots-Clés Gestion dynamique de mémoire B
Requis Structuration de I'information, Classes B
Difficulté eeo (1 h) B

@‘ Introduction
~ Ce module explique la gestion dynamique de la mémoire, aborde le clonage d’objets
(recopie et affectation) et donne la forme canonique de COPLIEN.

1.1

Unisciel algoprog — mmOOcours-texte, May 20, 2018 2
Gestion dynamique de mémoire

Gestion dynamique de mémoire

Le langage dispose de primitives adaptés a la gestion dynamique de la mémoire.

La primitive d’allocation réclame des blocs de mémoire dans la zone de la mémoire
appelée le tas (heap, en anglais) (dit aussi mémoire dynamique ou RAM wvive) et la
met a la disposition du programme. Cette opération est dite allocation dynamique
(en opposition a l'allocation statique) parce que ’espace mémoire est réservé lors de
I'exécution du programme (run time) et non lors de la compilation. Par analogie, les
entités créées de cette facon sont dites dynamiques. La durée de vie d'une entité créée
dynamiquement n’est pas limitée a la portée dans laquelle elle a été créée : elle existe
depuis son point de création jusqu’a sa destruction ou jusqu’a la fin du programme.

Lorsque celle-ci est devenue inutile, la primitive de libération permet de détruire ’entité
dynamique : la mémoire allouée est libérée et redonnée au systeme.

Il dépend de 'implémentation. Certaines implémentations permettent au programmeur
de controler la taille du tas. Ces programmes sont capables de vider le tas, s’ils réalisent
de grosses demandes de blocs mémoire, et qu’ils ne restituent pas au systeme lorsqu’ils
ne sont pas utilisés. Un programme devrait étre concu pour faire face a la situation ou
le tas est épuisé puisque tous les langages ne fournissent pas par défaut un gestionnaire
du tas.

1.2

((al))

((al))

Unisciel algoprog — mmOOcours-texte, May 20, 2018 3

Allocation dynamique de mémoire

En algorithmique, on suppose que le systeme possede une place mémoire sans limite et
que l'instruction d’allocation se termine correctement. Dans les langages de programma-
tion, des mécanismes existent pour savoir si le systeme d’exploitation a échoué dans son
essai de réservation d’espace mémoire pour la variable pointée.

Allouer(p)

Réserve une zone mémoire d’'une taille correspondant a la taille du sous-type du pointeur
p de type T (c.-a-d. Taille(T)) et mémorise 'adresse mémoire de cette zone dans la
variable pointeur p.

Allouer(p,nelems)

Réserve une zone de mémoire de type T[nelems], met ’adresse correspondante dans p et
initialise chacun des éléments du tableau dynamique a la valeur nulle du type T c.-a-d. a

TO.

Unisciel algoprog — mmOOcours-texte, May 20, 2018 4

1.3 Libération dynamique de mémoire

ﬁ Elle ne doit étre appliquée qu’a des pointeurs pointant sur une zone allouée dynamique-
ment.

(i)} [slg : Libération d’un élément

Libérer(p)

Libere et restitue au systeme d’exploitation la zone mémoire pointée par le pointeur p et
rend indéterminée la valeur de p.

(e} [slg : Libération d’un tablean

Libérer(p [1)

Libere la zone mémoire allouée au pointeur p. Ce sont les crochets qui indique au systeme
que l'adresse dans p réfere une structure tabulaire.

A Lors de la libération mémoire, la variable pointeur n’est pas initialisée a la valeur Nil.
Elle contient toujours la méme adresse mémoire mais celle-ci ne correspond plus a celle
d’une variable pointée puisque la variable pointée a été rendue au systeme d’exploita-
tion. L’utilisation de cette variable pointée provoque une erreur d’exécution avec arrét
immédiat de I’algorithme.

Unisciel algoprog — mmOOcours-texte, May 20, 2018)

1.4 Exemples

(@) Exemple Pseudo-code

Variable p : Pointeur Réel

Début

| Allouer(p) // allocation de 4 octets

| p* <- 6.1235 // attribution d’une valeur
| Libérer(p) // libération de la zone
Fin

A La libération d’une zone pointée peut avoir un effet de bord lorsque cette zone est pointée
par d’autres pointeurs, ou correspond a une variable.

(tg)) [Exemple Pseudo-code

Variable p, q : Pointeur Réel

Début

| Allouer(p) // allocation d’une zone dans le TAS

| p* <- 6.1235 // attribution d’une valeur

| g <- p // g pointe vers la méme zone que p

| Libérer(p) // libération de la zone pointée par p
| Afficher(gq*) // OUPS... affiche n’importe quoi
Fin

1.5

Unisciel algoprog — mmOOcours-texte, May 20, 2018 6

Création et destruction de tableaux

L’utilisation de tableaux nécessite un constructeur par défaut, c.-a-d. un constructeur
pouvant ne prendre aucun parametre lors de son invocation. Un tel constructeur peut :

e Ne prendre effectivement aucun parametre.

e Avoir des parametres qui acceptent tous une valeur par défaut.

Le constructeur Point::Point(int x=0,int y=0) est un constructeur par défaut.

Le besoin d’un constructeur par défaut est lié a la syntaxe de construction des tableaux.
Par exemple, pour un tableau a une dimension :

TElement idObjet[tailleTableaul];

Comme vous pouvez le constater, il n’y a pas de place pour des parametres de construc-
tion. La construction doit donc se faire sans parametre, d’ou la nécessité d’un construc-
teur par défaut.

Que faire si 'on doit créer un tableau d’objets sans constructeur par défaut ? La solution
est un peu alambiquée :

e On créé un tableau de pointeurs.

e On appelle le constructeur souhaité sur chacun des pointeurs.

A partir d’'une méme classe T, on peut avoir :

Unisciel algoprog — mm0OQOcours-texte, May 20, 2018

Type de tableau Construction des objets
Tableau statique

d'instances statiques Ttableau[TAILLE];

Tableau statique
d'instances
dynamiques

T *tableau[TAILLE];
for (int i=0; i<TAILLE;i++)
tableau[i]=new T(params);

Tableau dynamique
d'instances statiques

T *tableau;
tableau = new T[TAILLE]

typedef T* PT;

PT *tableau[TAILLE];

tableau = new PT[TAILLE]; for
(inti=0;i<TAILLE;i++)
tableau[i]=new T(params);

Tableau dynamique
d'instances
dynamiques

Destruction

Automatique

for (inti=0;i<TAILLE;i++)
delete tableauli];

delete [] tableau;

for (inti=0;i<TAILLE;i++)
delete *tableau[i]; delete []
tableau;

Remarques
Constructeur par défaut
obligatoire.

Tout est détruit
automatiquement

Le constructeur étant appelé
par |'utilisateur, n'importe
lequel fait I'affaire.
Attention, chaque objet doit
étre détruit individuellement

Constructeur par défaut
obligatoire

Seul le tableau doit étre
détruit explicitement

Les éléments doivent étre
détruits individuellement,
avantde détruire le tableau

1.6

Unisciel algoprog — mmOOcours-texte, May 20, 2018 8

La désallocation n’est pas simple

La libération mémoire est nécessaire pour ne pas épuiser le TAS et elle est a réaliser
des qu'une zone n’a plus d’utilité. Mais la gérer n’est pas une opération simple. Certains
langages de programmation (JAVA, PYTHON, Lisp...) la gérent automatiquement.

La gestion automatique de récupération de mémoire est nommée ramasse-miettes (gar-
bage collector en anglais).

Il est tres important de réfléchir sur les variables et sur la libération de la mémoire
dynamique. Les erreurs liées a ces mécanismes sont souvent tres difficiles a cerner. Une
stratégie prudente est de toujours se poser les questions suivantes :

e Est-ce que je libere tout ce que j’ai alloué?

e Tous les pointeurs sont-ils initialisés ?

e Est-ce que je libere plusieurs fois certaines données ?

e La mémoire dynamique est-elle initialisée correctement ?

La modularité et les types abstraits, et surtout les constructeurs et destructeurs, facilitent
ces manipulations et permettent de cacher les détails délicats. Tout ce qu'un constructeur
alloue doit étre libéré par le destructeur. Le couplage des constructeurs et destructeurs
avec les allocations et libérations est 'une des techniques qui permettent de limiter les
risques d’erreurs durant 1’exécution d’un programme.

Unisciel algoprog — mmOOcours-texte, May 20, 2018 9

1.7 Les schémas mémoire

Il est primordial de connaitre I’état des variables en cours d’exécution d’un algorithme
grace a un schéma mémoire.

Représente ’ensemble des variables et de leurs valeurs a une étape précise de son dérou-
lement.

Un schéma mémoire délimite trois parties distinctes :
e Le nom de l'algorithme.
e La partie des variables ou toutes les variables définies seront représentées par :

— Une valeur (ou par ? si la variable n’a pas encore de valeur) pour les variables
de type primitif.

— Une fleche (pointant sur une case dessinée dans la partie droite u schéma)
pour les variables de type Pointeur.

e La partie des instances ot chaque case aura été créée par ’allocation : il y a autant
de cases a représenter qu’il y a d’allocations dans 'algorithme.

Les erreurs a éviter :

Oublier de représenter une variable.
e Donner une mauvaise valeur a une variable.
e Représenter les instances sans une case associée.

Oublier de préciser I’étape (au cours du déroulement de I’algorithme) représentée
par le schéma mémoire.

2.1

C++

2.2

Unisciel algoprog — mmOOcours-texte, May 20, 2018 10

Clonage d’objets : recopie et affectation

Recopier un objet dans un autre est opération assez fréquente. Deux fonctionnalités y
sont dédiées en C++ : le constructeur par recopie et 'opérateur d’affectation.

Constructeur de recopie

Le constructeur par recopie est tres important car il permet d’initialiser un objet
par clonage d'un autre. Attention, j’ai bien dit initialiser, ce qui signifie que 'objet est
en cours de construction. En particulier, le constructeur par recopie est invoqué des lors
que 'on passe un objet par valeur a une fonction ou une méthode.

K::K(const K& 0);

Syntaxe du constructeur par recopie d’une classe K. Attention! Il est extrémement im-
portant de passer 1’'objet recopié par référence sous peine d’entrainer un appel récursif
infini!

Si vous ne fournissez pas explicitement de constructeur par recopie, le compilateur en
génere automatiquement un pour vous. Celui-ci effectue une recopie binaire optimisée de
votre objet... ce qui est parfait si celui-ci ne contient que des éléments simples.

En revanche, si votre objet contient des pointeurs, ce sont les valeurs des pointeurs qui
vont etre copiées et non pas les variables pointées, ce qui dans de nombreux cas, conduira
directement a la catastrophe.

Vous devez fournir un constructeur de recopie des lors que le clonage d’un objet par
recopie binaire brute peut entrainer un dysfonctionnement de votre classe, c’est a dire,
en particulier :

e Utilisation de mémoire dynamique.

e Utilisation de ressources systemes (fichiers, sockets, etc.).

Opérateur d’affectation

L’opérateur d’affectation et le constructeur de recopie sont tres proches dans le sens ou ils
sont requis dans les mémes circonstances et qu’ils effectuent la méme opération : cloner
un objet dans un autre. Il y a tout de méme une différence fondamentale : « 'opérateur

C++

2.3

Unisciel algoprog — mmOOcours-texte, May 20, 2018 11

d’affectation écrase le contenu d’un objet déja existant et donc totalement construit ».
Ce qui signifie que dans la majorité des cas, il faudra commencer par « nettoyer » 'objet
a la maniere d’'un constructeur avant d’effectuer 'opération de clonage dessus.

K& K::operator=(const K& 0);

Syntaxe de l'opérateur d’affectation d’une classe K.

Initialisation ou Affectation ?

Il est parfois délicat de savoir si 'on a affaire a une affectation ou une initialisation
car la syntaxe du signe « = » peut étre trompeuse. Il existe pourtant une regle simple :
Toute opération d’initialisation ou d’affectation dans une déclaration est l’affaire d’un
constructeur.

Le tableau suivant résume quelques cas qui doivent étre lus séquentiellement et ou T et
U sont des classes quelconques :

| Instruction Description Méthode mise en jeu
T3, Initialisation par le constructeur par défaut T::T(void);
T t2(params); Initialisation par un constructeur quelconque T::T(liste params);
Tt3(t1); Initialisation par le constructeur de recopie T::T(const T&);

Pieége : c'est le prototype de la fonction t4 qui
Tt4(); ne prend pas de paramétre mais renvoie un
objet de type T.

Initialisation par le constructeur de recopie
Cette ligne est a remplacer par T t5(t1); qui
fait exactement la méme chose mais est moins
ambigue du point de vue de la syntaxe.

Tt5=t1 T::T(const T&);

t5=t2 Affectation a I'aide de I'opérateur d'affectation T & T::operator=(const T&);

24

Unisciel algoprog — mmOOcours-texte, May 20, 2018 12

Constructions et Destructeur (Juillet 2017)

Si I'on ne définit pas de constructeur dans une classe, le constructeur par défaut se
contente de réserver I'espace mémoire pour I'objet et ses données membres mais elles ne
sont pas initialisées. Pour des pointeurs, il convient donc d’initialiser les variables.

Pour des tableaux dynamiques, on peut donc définir un constructeur avec parametres
qui s’occupe de la création et de I'initialisation.

Dans 'e cas !e constructeurs multip'es de méme nombre de parametres, c’est le type des

parametres qui détermine le constructeur appelé.

Dans le cas de constantes ou de ré!érences, I'initialiseur doit les initialiser. Exemple :

#include <iostream>
using namespace std;
class A

-~

private:
const int cil = 7; // initialisation a la declaration
const int ci2; // ou utilisation d’un initialiseur
double& cf; // initialiseur obligatoire

public:
A(double& f): ci2(5), cf(f) {}
A(int i, double& f) : ci2(i), cf(f){}
void afficher(){ cout<<cil<<" "<<ci2<<" "<<cf<<endl; }

};
int main()
{
double f1 = 5.5;
A al(f1);
f1 += 100; // modification du double d’origine
al.afficher(); // 7, 5, 105.50
double f2 = 22.25;
A a2(100, f2);
f2 x= 100; // modification du double d’origine
a2.afficher(); // 7, 100, 2225.0
3

Le constructeur de recopie effectue, par défaut, une copie membre a membre. Paf consé-
quent, dans le cas de tableaux dynamiques (par exemple), il faut donc s'il s’occupe de
I’allocation mémoire, sous peine de pointer vers les mémes éléments.

Unisciel algoprog — mmOOcours-texte, May 20, 2018 13

Elle pose le méme cas de probleme que le constructeur de recopie en cas d’allocation
dynamique de mémoire.

Il sert a libérer la mémoire allouée. Il ne peut n’y en avoir qu'un par classe. Le destructeur
est appelé automatiquement a l'issue du bloc dans lequel a été créé 'objet. Et donc, si
des allocations dynamiques ont été opérées, il faut écrire son propre destructeur.

Unisciel algoprog — mmOQOcours-texte, May 20, 2018 14

Forme canonique de Coplien

On dit qu’une classe T est sous forme canonique de COPLIEN si elle fournit les éléments

suivants :

Prototype Fonctionnalité
T:T() Constructeur par défaut
T::T(const T&) Constructeur par recopie
T& T::operator=(const T&) Opérateurd'affectation
T::~T() Destructeur

Si ces éléments sont codés correctement, alors 1'utilisation de cette classe vis a vis de la
mémoire est sécurisé. Des qu’une classe utilise de la mémoire dynamique ou des ressources
critiques, il est indispensable de la mettre sous forme canonique de COPLIEN.

	Gestion dynamique de mémoire
	Gestion dynamique de mémoire
	Allocation dynamique de mémoire
	Libération dynamique de mémoire
	Exemples
	Création et destruction de tableaux
	La désallocation n'est pas simple
	Les schémas mémoire

	Clonage d'objets: recopie et affectation
	Constructeur de recopie
	Opérateur d'affectation
	Initialisation ou Affectation?
	Constructions et Destructeur (Juillet 2017)

	Forme canonique de Coplien

