
Tableau unidimensionnel [tb]
Support de Cours

Karine Zampieri, Stéphane Rivière

Unisciel algoprog Version 18 mai 2018

Table des matières

1 Définitions et notations 3
1.1 Qu’est-ce qu’un tableau ? . 3
1.2 Déclaration et initialisation d’un tableau 5
1.3 Exemple : Déclaration et initialisation . 6
1.4 Accès indiciel . 7
1.5 Exemple : Accès indiciel . 8

2 Tableaux et paramètres 9
2.1 Synonyme de type . 9
2.2 Tableau et paramètres . 10
2.3 Tableau et fonction . 11
2.4 Exemple : Saisie et affichage d’un tableau 12

3 Parcours d’un tableau 14
3.1 Parcours complet . 14
3.2 Parcours partiel . 15
3.3 Parcours imbriqué . 17

4 C/C++ - Spécificités 18
4.1 Tableau variable . 18

C - Tableau unidimensionnel (Cours)

Mots-Clés Tableau unidimensionnel, Parcours d’un tableau �
Requis Structures de base, Structures conditionnelles, Algorithmes paramétrés, Struc-
tures répétitives, Schéma itératif �
Difficulté • • ◦ (2 h) �

1

Unisciel algoprog – tb00cours1-texte, May 18, 2018 2

Introduction
De par leur praticité, les tableaux sont omniprésents en algorithmique et program-
mation : une variable regroupant sous le même nom plusieurs valeurs de même type
accessibles par leur position.

Ce module donne les définitions et notations de tableau sur une dimensionpuis décrit
la transmission des tableaux ainsi que ses parcours (complet, partiel, imbriqué).

Unisciel algoprog – tb00cours1-texte, May 18, 2018 3

1 Définitions et notations

1.1 Qu’est-ce qu’un tableau ?

Tableau, Type du tableau, Taille
Un tableau (sous-entendu monodimensionnel ou linéaire) est une collection homogène
indicée sur N, c.-à.d. une séquence d’éléments de même type portant tous le même nom
mais se distinguant les uns des autres par un indice. Le type du tableau est le type de
ses éléments. Sa taille ou capacité est le nombre (strictement positif) de ses éléments.

Il n’y a pas de trou
Tous les éléments existent entre le premier et le dernier indice.

Indice (ou index ou rang)
Entier donnant la position d’un élément dans la séquence. Cet indice varie entre la
position du premier élément et la position du dernier élément, ces positions correspondant
aux bornes de l’indice.

Un Indice = Une case
A chaque valeur de l’indice ne correspond qu’une et une seule case du tableau, donc un
élément.

Taille statique v.s. variable
La taille d’un tableau ne peut pas être modifiée pendant son utilisation. On qualifie
ce genre de tableau de taille statique (nombre fixe d’éléments). Nous verrons ulté-
rieurement qu’il existe des tableaux de taille variable et appelés vecteurs ou tableaux
dynamiques. Ce module ne traite que des premiers.

Taille logique v.s. physique
Comme on utilisera un tableau plus grand que le nombre utile de ses éléments, on parle
aussi de taille logique, dite aussi effective (le nombre d’éléments effectivement utilisés),
que l’on oppose à la taille physique (la taille maximale du tableau).

Unisciel algoprog – tb00cours1-texte, May 18, 2018 4

En C/C++
Un tableau n’est pas une valeur : il ne peut pas être affecté à une variable, ni retourné
par une fonction. Comme on le verra, un tableau, excepté lors de sa définition ou du
calcul de sa taille, n’est pas manipulé globalement mais élément par élément.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 5

1.2 Déclaration et initialisation d’un tableau

Déclaration d’un tableau

TypeElement nomTab[taille];

Explication
Déclare une variable dimensionnée. Avec : TypeElement le type (simple ou non) des élé-
ments constitutifs du tableau, nomTab l’identifiant et taille son nombre d’éléments. La
taille doit être une valeur entière positive (littéraux ou expressions constantes).

Déclaration et initialisation

TypeElement nomTab [taille] = {val1, ..., valN}; // taille explicite
TypeElement nomTab [] = {val1, ..., valN}; // taille de la liste

Explication
Déclare (voir supra) et initialise un tableau. Les valI sont des valeurs littérales ou ex-
pressions constantes de type compatible TypeElement initialisant séquentiellement chacun
des éléments du tableau. Dans le cas (2) la longueur de la liste détermine le nombre
d’éléments. Dans le cas (1), si la liste d’initialisation contient moins d’éléments que la
taille spécifiée, les éléments manquants seront initialisés par défaut au zéro du type
TypeElement.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 6

1.3 Exemple : Déclaration et initialisation

Exemple C

int tab[8];
enum {NTEMPMAX=366};
double temp[NTEMPMAX];
char message[25];

Explication
La variable tab est un tableau de 8 cases de type entier, temp un tableau de NTEMPMAX cases
de réels et message un tableau de 25 caractères.

Exemple C

int chif1[] = {1,2,3,4,5,6,7,8,9,10};
int chif2[10] = {3,3,3};

double x1[] = {0.25,0,0,-0.5,0};
double x2[5] = {0.0};

char coulr1[] = {’B’,’L’,’E’,’U’};
char coulr2[] = {"BLEU"};

Explication
Ces initialisations produisent l’affectation des valeurs suivantes aux éléments de ces ta-
bleaux :

chif1[0]=1 chif2[0]=3 x1[0]=0.25 x2[0]=0.0 coulr1[0]=’B’ coulr2[0]=’B’
chif1[1]=2 chif2[1]=3 x1[1]=0.0 x2[1]=0.0 coulr1[1]=’L’ coulr2[1]=’L’
chif1[2]=3 chif2[2]=3 x1[2]=0.0 x2[2]=0.0 coulr1[2]=’E’ coulr2[2]=’E’
chif1[3]=4 chif2[3]=0 x1[3]=-0.5 x2[3]=0.0 coulr1[3]=’U’ coulr2[3]=’U’
chif1[4]=5 chif2[4]=0 x1[4]=0.0 x2[4]=0.0

coulr2[4]=’\0’
chif1[5]=6 chif2[5]=0
chif1[6]=7 chif2[6]=0
chif1[7]=8 chif2[7]=0
chif1[8]=9 chif2[8]=0
chif1[9]=10 chif2[9]=0

Unisciel algoprog – tb00cours1-texte, May 18, 2018 7

1.4 Accès indiciel

Accès indiciel

tab[k]

Explication
Accède à la case d’indice k d’un tableau tab.
Le temps d’accès à l’élément est fixe.

Numérotation des cases
Chaque langage de programmation possède sa propre convention.

• alg : Les cases sont numérotées de 1 (par défaut) à TMAX (taille du tableau).

• C/C++, Java, Python : Ils commencent à indicer un tableau à partir de 0. Ce
principe est dit l’indexation en base 0.

• Basic : Il débute la numérotation à partir de 1 ou 0.

• Ada : Il permet de numéroter les cases à partir d’une valeur quelconque.

Dépassement des bornes
Les langages contrôlent le débordement des bornes d’un tableau et déclenchent une erreur
qui généralement arrête le programme. A l’exception du langage C/C++ qui n’effectue
aucun contrôle.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 8

1.5 Exemple : Accès indiciel

Exemple C/C++
Soit le tableau déclaré ainsi :

int tab[100];

Explication
Il est interdit d’utiliser tab[-1] ou tab[100]. De plus, chaque élément tab[j] (avec j dans
[0..99]) doit être manié avec la même précaution qu’une variable simple, c.-à-d. qu’on
ne peut utiliser un élément du tableau qui n’aurait pas été préalablement affecté ou
initialisé.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 9

2 Tableaux et paramètres

2.1 Synonyme de type

Synonyme de type
Alias d’un type existant (lorsqu’un nom de type est trop long ou est difficile à manipu-
ler).

Synonyme de type

typedef TypeExistant TypeAbrege;

Explication
Désigne l’identifiant TypeAbrege comme étant un synonyme du type TypeExistant.

Typedef = Définition
Typedef N’introduit pas de nouveau type mais un nouveau nom pour le type.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 10

2.2 Tableau et paramètres

Le passage par valeur a pour conséquence de créer une copie de l’entité passé en paramètre
effectif. Dans le cas d’un tableau, cette opération est coûteuse en temps et en mémoire.

L’algorithmique ne se préoccupe pas de cet aspect technique. Par contre il convient de
tenir compte des caractéristiques du langage de programmation pour réaliser le passage
des paramètres le plus adéquat.

L’autre point particulier est qu’il serait utile de pouvoir appeler le même module avec des
tableaux de « tailles » différentes. Pour permettre cela, il convient de passer également
la taille logique n en paramètre.

Définitions C
Soient les définitions suivantes :

enum {TMAX = ...};
typedef T Tableau[TMAX]; // avec T un type quelconque

Tableau et paramètres
Le prototype des modules sera :

... ssprg(T tab[TMAX], int n, ...) // tab en modification

... ssprg(Tableau tab, int n, ...) // autre écriture

... ssprg(const T tab[TMAX], int n, ...) // tab en lecture seule

... ssprg(const Tableau tab, int n, ...) // autre écriture

Explication
La transmission des tableaux se fait toujours par adresse, d’où la perte de son nombre
d’éléments et la possibilité de les modifier.

Lors d’un passage par adresse constant, le compilateur vérifie que le paramètre n’est
accédé qu’en lecture : ceci garantit efficacité et sécurité.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 11

2.3 Tableau et fonction

Tableau et fonction
Une fonction ne peut pas fournir un résultat qui soit un tableau.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 12

2.4 Exemple : Saisie et affichage d’un tableau

La saisie et l’affichage sont deux opérations de base d’un tableau. Nous allons donc écrire
deux procédures utilitaires saisirTab et afficherTab. Voici d’abord l’algorithme :

Programme C

#define TMAX 20
typedef int Tableau[TMAX];
int main(void)
{
Tableau tab;
int nelems = saisirTab(tab);
afficherTab(tab,nelems);

}

Explication
L’algorithme déclare un tableau d’entiers tab de taille maximale TMAX. La procédure
saisirTab a pour effet de demander le nombre d’éléments, de saisir les valeurs dans tab

puis elle renvoie le nombre d’éléments saisis, ce dernier étant mémorisé dans l’entier
nelems. La procédure afficherTab affiche les nelems éléments de tab.

Exemple d’exécution

Nombre d’éléments dans [1..20]? 10
t[0]? 45
t[1]? 4
t[2]? 1
t[3]? -56
t[4]? 22
t[5]? 34
t[6]? 49
t[7]? 12
t[8]? 0
t[9]? -27
[45 4 1 -56 22 34 49 12 0 -27]

Fonction saisirTab

int saisirTab(Tableau t)
{
printf("Nombre de valeurs dans [1..%d]? ",TMAX);
int n;
scanf("%d",&n);
while(!(1<=n && n<=TMAX))
{

printf("ERREUR dans [1..%d]? ",TMAX);
scanf("%d",&n);

}
int ix;

Unisciel algoprog – tb00cours1-texte, May 18, 2018 13

for (ix=0; ix<n; ++ix)
{

printf("t[%d]? ",ix);
scanf("%d",&t[ix]);

}
}

Explication
La fonction saisirTab effectue une saisie sécurisée du nombre d’éléments dans n (entier)
compris dans [1..TMAX] puis saisit un à un n entiers et les stocke dans un ITableau t et
renvoie n.

Procédure afficherTab

void afficherTab(const Tableau t,int n)
{
printf("[");
int ix;
for (ix=0; ix<n; ++ix)
{

printf("%d ",t[ix]);
}
printf("]\n");

}

Explication
La procédure afficherTab affiche à la queue-leu-leu (séparés par un espace) les n éléments
d’un ITableau t.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 14

3 Parcours d’un tableau

Les tableaux interviennent dans de nombreux problèmes : il est primordial de savoir les
parcourir en utilisant des algorithmes corrects, efficaces et lisibles.

Cette section examine les situations courantes et quelles solutions conviennent. On peut
aussi envisager d’autres parcours (à l’envers, une case sur deux, ...) mais ils ne repré-
sentent aucune difficulté nouvelle.

Déclarations

const int TMAX = ...;
typedef T Tableau[TMAX]; // avec T un Type quelconque
Tableau tab;

3.1 Parcours complet

Pour parcourir complètement un tableau, la répétitive Pour est le moyen le plus simple
comme dans l’algorithme suivant où « traiter » va dépendre du problème concret posé :
afficher, modifier, sommer...

Parcours complet

int j;
for (j=0; j<n; ++j)
{
traiter tab[j];

}

Unisciel algoprog – tb00cours1-texte, May 18, 2018 15

3.2 Parcours partiel

Certains algorithmes se contentent de parcourir successivement les différents éléments du
tableau jusqu’à rencontrer un élément satisfaisant une certaine condition. Par exemple :

• On cherche la présence d’un élément et on vient de le trouver.

• On vérifie qu’il n’y a pas de 0 et on vient d’en trouver un.

Parcours complet, boucle TantQue
Un tel parcours partiel est le plus souvent basé sur une répétitive conditionnelle. La
première étape est donc de transformer le Pour en TantQue ce qui donne :

int j=0;
while (j<n)
{
traiter tab[j];
++j;

}

Remarque
On peut à présent introduire le test d’arrêt. A la fin de la boucle, une contrainte est
qu’on voudra savoir si oui ou non on s’est arrêté prématurément et, si c’est le cas, à
quel indice. Il existe essentiellement deux solutions, avec ou sans variable booléenne. En
général, la solution [A] sera plus claire si le test est court.

(A) Parcours partiel, Sans variable booléenne

int j=0;
while (j<n && test_sur_tab[j]_dit_que_on_continue)
{
traiter tab[j];
++j;

}
if (j>=n)
{
//on est arrivé au bout

}
else
{
//arrêt prématuré à l’indice j

}

Ne testez pas tab(.j.) à l’extérieur de la boucle
Car j n’est peut-être pas valide.

(B) Parcours partiel, Avec variable booléenne

int j = 0;
bool trouve = false;
while (j<n && !trouve)

Unisciel algoprog – tb00cours1-texte, May 18, 2018 16

{
if (test_sur_tab[j]_dit_que_on_a_trouvé)
{

trouve = true;
}
else
{

++j;
}

}
//tester le Booléen Pour savoir Si arrêt prématuré

Attention
Choisissez un nom de booléen adapté au problème et initialisez-le à la bonne valeur. Par
exemple, si la variable s’appelle « bcontinue » :

• Initialisez la variable à Vrai.

• Le test de la boucle est « ...Et bcontinue ».

• Mettez la variable à Faux pour sortir de la boucle.

Unisciel algoprog – tb00cours1-texte, May 18, 2018 17

3.3 Parcours imbriqué

Certains algorithmes sur les tableaux font appel à des boucles imbriquées. La boucle
principale sert généralement à parcourir les cases une à une, tandis que le traitement de
chaque case dépend du parcours simple d’une partie du tableau (par exemple toutes les
cases restantes) ce qui correspond à la boucle interne.

Parcours imbriqué

int j,k;
for (j=0; j<n; ++j)
{
for (k=...)
{

traiter tab[k];
}

}

Unisciel algoprog – tb00cours1-texte, May 18, 2018 18

4 C/C++ - Spécificités

4.1 Tableau variable

Avant la norme C99, tous les tableaux déclarés étaient de dimension fixe. Il n’était pas
possible de paramétrer la taille d’un tableau en donnant une valeur au paramètre au
moment de l’exécution du programme. La norme C99 a introduit la notion de tableau
dont la dimension est une variable.

Exemple : C
Ainsi il est possible d’écrire :

#include <stdio.h>
void ssp(int a)
{

int t[a];
printf("(ssp)taille t = %d\n",sizeof(t));

}
int main()
{

int j = 5;
int tab[j];
printf("taille tab = %d\n",sizeof(tab));
printf("n? ");
int n;
scanf("%d",&n);
int tab2[n];
printf("taille tb2 = %d\n",sizeof(tab2));
ssp(10);

}

Exemple d’exécution :

taille tab = 20
n? 5
taille tb2 = 20
(dans spp)taille t = 40

	Définitions et notations
	Qu'est-ce qu'un tableau?
	Déclaration et initialisation d'un tableau
	Exemple: Déclaration et initialisation
	Accès indiciel
	Exemple: Accès indiciel

	Tableaux et paramètres
	Synonyme de type
	Tableau et paramètres
	Tableau et fonction
	Exemple: Saisie et affichage d'un tableau

	Parcours d'un tableau
	Parcours complet
	Parcours partiel
	Parcours imbriqué

	C/C++ - Spécificités
	Tableau variable

