
Structures conditionnelles [if]
Support de Cours

Karine Zampieri, Stéphane Rivière

Unisciel algoprog Version 14 mai 2018

Table des matières

1 Conditions 3
1.1 Opérateurs de comparaison . 3
1.2 Condition simple . 4
1.3 Opérateurs logiques . 5
1.4 Propriétés des opérateurs logiques . 6
1.5 Condition composée . 7
1.6 Priorité des opérateurs . 8
1.7 Évaluation paresseuse des opérateurs Et et Ou 9
1.8 Exemples : Priorité et évaluation . 10

2 Sélectives Si, Si-Alors et Si-Sinon-Si 11
2.1 Sélective Si . 11
2.2 Sélective Si-Alors . 12
2.3 Remarques . 13
2.4 Exemple : Sélectives Si et Si-Alors . 14
2.5 Sélective Si-Sinon-Si . 15

3 Arbre de choix 16

4 Compléments 18
4.1 Sélective Selon . 18
4.2 Sélective Selon (listes de valeurs) . 19
4.3 Exemple : Jour de la semaine en clair . 21
4.4 Opérateur Si-expression . 22

5 Spécificités C/C++ 23
5.1 Ordre d’évaluation des opérandes . 23

6 Références générales 24

1

Unisciel algoprog – if00cours-texte [if], May 14, 2018 2

C++ - Structures conditionnelles (Cours)

Mots-Clés Conditions, Sélective Si, Sélective Si-Sinon-Si, Sélective Selon �
Requis Qu’est-ce qu’un algorithme, Structures de base �
Difficulté • ◦ ◦ (3 h) �

Introduction
Ce module traite des notions de conditions (simples, booléens, conditions composées)
puis introduit les structures conditionnelles (Si, Si-Alors et Si-Sinon-Si) et définit
l’arbre de choix . Le Compléments décrit la sélective Selon ainsi que l’opérateur Si-
expression.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 3

1 Conditions

1.1 Opérateurs de comparaison

Opérateurs de comparaison
Dits aussi opérateurs relationnels ou comparateurs, ils agissent généralement sur des
variables numériques ou des châınes et donnent un résultat booléen. Pour les caractères
et châınes, c’est l’ordre alphabétique qui détermine le résultat.

Opérateurs de comparaison

Opérateur Équivalent
Mathématique Signification Algorithmique C/C++

< (strictement) inférieur a < b a < b

≤ inférieur ou égal a <= b a <= b

> (strictement) supérieur a > b a > b

≥ supérieur ou égal a >= b a >= b

= égalité a = b a == b

6= différent de (ou inégalité) a <> b a != b

Distinguer == et =

x == y x = y
⇒ Test d’égalité ⇒ Affectation

A gauche Compare la valeur de x à celle de y et rend true si elles sont égales, false
sinon (et donc ne modifie pas la valeur de x)

A droite Affecte à la variable x la valeur de y (et donc modifie la valeur de x)

Unisciel algoprog – if00cours-texte [if], May 14, 2018 4

1.2 Condition simple

Condition simple
Notée v1 Φ v2, elle associe un opérateur de comparaison Φ et deux valeurs v1 et v2 de
même nature (même type ou types comparables) et délivre un résultat booléen :

• Vrai : on dit que la condition est vérifiée.

• Faux : cas de condition non vérifiée.

Exemples

• eval(2<3) est Vrai.

• eval(6*3=13) est Faux.

• eval(’A’<’E’) est Vrai car l’ordre alphabétique est respecté dans les codes ASCII
attribués aux lettres.

• eval("milou"<"tintin") est Vrai de même que eval("assembleur"<="java").

• eval(’a’<’A’) est Faux car les majuscules sont avant les minuscules.

• eval("Bonjour">"Bon jour") est Faux car l’espace est avant les lettres.

• Si n1 et n2 sont deux variables de type entier contenant les valeurs 7 et 5, eval(2*n1>n2+3)
est eval(2*7>5+3) c.-à-d. eval(14>8) donc Vrai.

Tester x dans (a..b)
Contrairement aux mathématiques, les opérateurs de comparaison ne peuvent pas être
enchâınés. Ainsi, pour vérifier si un nombre x ∈ [a..b], il faut écrire :

(a <= x Et x <= b)

En effet :

(a <= x <= b)
≡ ((a <= x) <= b)

≡ ({Faux Ou Vrai} <= b)

On compare donc un booléen à un entier avec l’opérateur inférieur (<) : erreur, les types
sont différents. Cependant dans les langages comme le C/C++, le Faux équivaut au 0
et le Vrai à 1 : ici c’est donc vrai... pour tout b positif.
Dans tous les cas, il faudra exploiter les opérateurs logiques pour exprimer de telles
conditions.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 5

1.3 Opérateurs logiques

Opérateurs logiques
Dits aussi connecteurs logiques ou opérateurs booléens, ils agissent sur des expres-
sions booléennes (variables ou expressions à valeurs booléennes) pour donner un résultat
du même type. Ils peuvent être enchâınés.

Opérateurs logiques

Opérateur Équivalent
Mathématique Signification Algorithmique C/C++

¬ négation (unaire) Non a !a

∧ conjonction logique a Et b a && b

∨ disjonction logique (ou inclusif) a Ou b a || b

Opérateurs logiques

Opérateur Équivalent
Mathématique Signification Algorithmique C++

¬ négation (unaire) Non a not a

∧ conjonction logique a Et b a and b

∨ disjonction logique (ou inclusif) a Ou b a or b

Opérateur Ou-exclusif
Il n’y a pas d’opérateur OU-exclusif (xor) logique.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 6

1.4 Propriétés des opérateurs logiques

Propriétés des opérateurs logiques
Elles sont définies sous forme de tableaux communément appelés tables de vérité. Ces
tableaux se lisent ligne par ligne.

• c1 Et c2 est vrai ssi les deux conditions sont vraies.

• c1 Ou c2 est faux ssi les deux conditions sont fausses.

Variable booléenne
Pour un booléen b :

• b = Faux est équivalent à Non b

• b = Vrai est équivalent à b

• Non Non b est équivalent à b

Dans les trois cas, nous préconiserons la seconde écriture.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 7

1.5 Condition composée

Condition composée
(Plus simplement condition ou expression logique) Notée b1 Ψ1 b2 Ψ2 . . ., elle associe
des opérateurs logiques Ψi et des valeurs booléennes bj et délivre un résultat booléen (Vrai
ou Faux). Elle permet de relier des conditions simples en une seule « super-condition ».

Exemples

• L’entier a doit être strictement supérieur à zéro et strictement inférieur à 100 :

a > 0 && a < 100
a > 0 and a < 100

• La couleur c doit être Rouge, Verte ou <Bleue :

c == Rouge || c == Vert || c == Bleu
c == Rouge or c == Vert or c == Bleu

• La couleur c ne doit pas être Noire :

!(c == Noir)
not(c == Noir)

• « A un feu de croisement, je m’arrête s’il est rouge ou s’il est orange et si ma vitesse
est inférieure à 40km/h. Dans les autres cas, je passe. »
arret = (feu == rouge) or (feu == orange and vitesse < 40)
passe = not arret

Théorèmes de De Morgan
Ils énoncent :

Non(a Et b) ⇔ Non a Ou Non b

Non(a Ou b) ⇔ Non a Et Non b

Utilité
Formulés par le mathématicien britannique, Augustus De Morgan, les théorèmes
énoncent des équivalences entre des expressions booléennes faisant intervenir des néga-
tions et permettent de les simplifier.

Résumé des propriétés
Les opérateurs vérifient les propriétés suivantes :

¬¬a = a

¬(a ∧ b) = ¬a ∨ ¬b

¬(a ∨ b) = ¬a ∧ ¬b

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Unisciel algoprog – if00cours-texte [if], May 14, 2018 8

1.6 Priorité des opérateurs

C/C++ : Priorité des opérateurs
Les opérateurs de même priorité sont regroupés sur une même ligne.

Opérateur
Priorité Algorithmique C/C++ Signification
La plus élevée - (unaire) - (unaire) Négation algébrique

^ (aucun) Puissance
* / div mod * / / % Multiplication, division, div. entière, modulo
+ - + - Addition et soustraction
< <= > >= < <= > >= Opérateurs de comparaison
= <> == != Opérateurs d’égalité
Non ! Négation logique
Et && Et logique

La plus basse Ou || Ou logique

Cas de combinaisons de Et et de Ou
Mettez des parenthèses :

(cond1 Et cond2) Ou cond3

est différent de
cond1 Et (cond2 Ou cond3)

En l’absence de parenthèses, le Et est prioritaire sur le Ou.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 9

1.7 Évaluation paresseuse des opérateurs Et et Ou

Principe de l’évaluation paresseuse
(« Lazy evaluation ») Dite aussi évaluation court-circuitée (« shortcut »), elle s’ef-
fectue de la gauche vers la droite et ne sont évalués que les conditions strictement
nécessaires à la détermination de la valeur logique de l’expression.

Utilité de l’évaluation paresseuse
Elle permet de gagner du temps mais surtout elle évite des erreurs d’exécution.

Exemple
considérons l’expression :

n <> 0 Et m/n > 10

Si n est nul, l’évaluation paresseuse donne le résultat Faux immédiatement après test
de la première condition sans évaluer la seconde, tandis qu’une évaluation complète
entrainerait un arrêt de l’algorithme pour cause de division par 0.

Non-commutativité du Et et du Ou
L’évaluation paresseuse a pour conséquence :

c1 Et c2

n’est pas équivalent à
c2 Et c1

Unisciel algoprog – if00cours-texte [if], May 14, 2018 10

1.8 Exemples : Priorité et évaluation

Exemple : Priorité des opérateurs
Considérons l’expression logique :

non a+2<30 ou (b-c/2=28 et c^11>2000*c+1)

Elle est équivalente à :

(non((a+2)<30))
ou (((b-(c/2))=28) et ((c^11)>((2000*c)+1)))

La formule avec sous-accolades est :

(non ((a + 2)︸ ︷︷ ︸ < 30)︸ ︷︷ ︸)︸ ︷︷ ︸
ou (((b− (c/2)︸ ︷︷ ︸)︸ ︷︷ ︸ = 28)

︸ ︷︷ ︸
et ((c11)︸ ︷︷ ︸ > ((2000 ∗ c)︸ ︷︷ ︸+1)︸ ︷︷ ︸)︸ ︷︷ ︸

)

︸ ︷︷ ︸

Exemple : Évaluation paresseuse
Le tableau ci-dessous rassemble les évaluations de l’expression booléenne :

expr <-- (A > 10 et A <= 12) ou (non (B > 10))

Par exemple, la deuxième colonne du tableau montre que si A contient 0 et B contient -3,
alors l’évaluation booléenne de expr donne Vrai. De plus, si la case est vide, ceci signifie
que la condition n’est pas évaluée en raison de l’évaluation paresseuse.

A 0 11 13
B -3 16 16

A > 10 Faux Vrai Vrai
A <= 12 Vrai Faux

A > 10 et A <= 12 Faux Vrai Faux
B > 10 Faux Vrai

non (B > 10) Vrai Faux
expr <- (A > 10 et A <= 12) ou (non (B > 10)) Vrai Vrai Faux

Unisciel algoprog – if00cours-texte [if], May 14, 2018 11

2 Sélectives Si, Si-Alors et Si-Sinon-Si

2.1 Sélective Si

Sélective Si
Elle traduit : Si la condition est vraie, exécuter les instructionsAlors, Sinon exécuter les
instructionsSinon. Il s’agit d’un choix binaire : une et une seule des deux séquences est
exécutée.

La condition peut être simple ou complexe (avec des parenthèses et/ou des opérateurs
logiques Et, Ou, Non).

Sélective Si

if (condition)
{
instructionsAlors;

}
else
{
instructionsSinon;

}

C/C++
Notez l’absence du mot-clé Alors d’où l’obligation des parenthèses autour de la condition.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 12

2.2 Sélective Si-Alors

Sélective Si-Alors
Forme restreinte de la structure Si (sans clause Sinon).

Sélective Si-Alors

if (condition)
{
instructionsAlors;

}

Unisciel algoprog – if00cours-texte [if], May 14, 2018 13

2.3 Remarques

Syntaxes Sélection binaire et blocs
Utilisez la syntaxe avec des blocs (même s’il n’y a qu’une seule instruction) :

• Ceci évite de retenir deux syntaxes différentes.

• En cas d’ajout d’instructions, le bloc est déjà présent.

C/C++ : L’expression logique !
Le langage considère comme expression logique une expression de n’importe quel type
via la convention :

si eval(expression) est nulle
=> condition fausse
(sinon elle est vraie)

Les valeurs nulles sont : les zéros numériques (0 et 0.0), la valeur false et la valeur void

(cf. @[Structuration de l’information, le type Pointeur]).

C/C++ : Que signifie « if (x)... » ?

Si x booléen Si x non booléen

⇒ OK bonne écriture ⇒ Équivaut if (x != 0)

Conseil : Préférez l’écriture explicite des expressions logiques.

A propos des tests numériques

Puisque 2 + 3 = 5, on a
(√

2
)2

+
(√

3
)2

=
(√

5
)2

.
Mais que se passe-t-il si on utilise un tel calcul dans un test ? Le calcul est considéré
comme faux car les réels-machine sont des valeurs approchées. Il convient donc d’être
très prudent quand on utilise des égalités numériques (sur les réels) dans les tests.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 14

2.4 Exemple : Sélectives Si et Si-Alors

Cet exemple saisit la moyenne annuelle d’un étudiant dans un entier moy puis affiche l’un
des deux messages suivants :

Vous ne passez pas dans l’année supérieure
Bravo, vous passez dans l’année supérieure

Le premier est affiché si moy < 10, sinon c’est le deuxième. Et dans le cas où 16 <= moy <=

20, il affiche également :

Avec les félicitations du jury

Programme @[pgpassage1.cpp]

#include <iostream>
using namespace std;

int main()
{
double moy;
cout<<"Moyenne? ";
cin>>moy;
if (moy < 10.0)
{

cout<<"Vous ne passez pas dans l’annee superieure"<<endl;
}
else
{

cout<<"Vous passez dans l’annee superieure"<<endl;
if (16.0 <= moy && moy <= 20.0)
{
cout<<"Avec les felicitations du jury"<<endl;

}
}

}

Explication
La première condition est une condition simple : moy < 10, et la deuxième condition une
condition composée : 16 <= moy Et moy <= 20.

Trace d’exécution
La présence d’une sélective Si ne change pas le principe de la trace d’exécution qui est
de suivre pas à pas le contenu des variables.

Pour l’exemple, on a : 13 ==> "Vous passez dans l’année supérieure". En effet, après l’exé-
cution de l’instruction de saisie saisir(moy), la variable moy contient la valeur 13 et l’exé-
cution commence à traiter la deuxième instruction. Cette deuxième instruction est une
instruction Si mais comme sa condition moy < 10 est fausse, le bloc d’instructions exécuté
est celui de la clause Sinon...

Unisciel algoprog – if00cours-texte [if], May 14, 2018 15

2.5 Sélective Si-Sinon-Si

Sélective Si-Sinon-Si
Elle évalue successivement la conditionI et exécute les instructionsI si elle est vérifiée. En
cas d’échec des n conditions, exécute les instructionsSinon.

Sélective Si-Sinon-Si

if (condition1)
{
instructionsA1;

}
else if (condition2)
{
instructionsA2;

}
else if...
...
else if (conditionN)
{
instructionsAn;

}
else
{
instructionsSinon;

}

Unisciel algoprog – if00cours-texte [if], May 14, 2018 16

3 Arbre de choix

Si imbriquées et Si en cascade
Dans le cas de choix arborescents – un choix étant fait, d’autres choix sont à faire, et
ainsi de suite –, il est possible de placer des structures Si de deux façons :

• Si imbriquées : A l’intérieur de chacune des clauses Alors et Sinon.

• Si en cascade : Uniquement dans la clause Sinon, d’où l’emploi du Si-Sinon-Si.

Il n’y a pas de limitation dans la profondeur des imbrications et/ou cascade sauf par
rapport à la lisibilité de l’algorithme. L’unique règle à respecter est qu’à chaque Si doit
correspondre au même niveau un FinSi et réciproquement. L’indentation est un moyen
d’éviter ce type d’erreur.

Arbre de choix
Dit aussi arbre de décision, il permet de visualiser graphiquement les structures Si.
La forme de l’arbre décrit immédiatement s’il s’agit de structures Si imbriquées et/ou en
cascade.

Structures Si et son arbre de choix

Indentation
Dans l’écriture de tout programme, on veillera à indenter correctement les lignes de
codes afin de faciliter sa lecture. Cela veut dire :

1. Les balises encadrant toute structure de contrôle devront être parfaitement à la
verticale l’une de l’autre : Début avec Fin ; Si[, Sinon] avec Finsi ; (c’est vrai aussi
pour celles que nous allons voir plus tard : Selon ; TantQue ; Répéter avec Jusquà ; Pour
avec FinPour.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 17

2. Les lignes situées entre toute paire de balises devront être décalées d’une tabulation
vers la droite.

3. Sur papier, on tracera une ligne verticale entre le début et la fin d’une structure
de contrôle afin de mieux la délimiter.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 18

4 Compléments

4.1 Sélective Selon

La structure Selon est une simplification d’écriture de plusieurs alternatives imbriquées.
Deux formes existent :

• Sélective Selon (listes de valeurs)

• Sélective Selon (conditions)

La forme acceptée par la plupart des langages de programmation est celle avec listes de
valeurs.

Sélective Selon (listes de valeurs)

Si expr = une des valeurs de la liste1 Alors
instructions lorsque la valeur est dans liste1
Sinon Si expr = une des valeurs de la liste2 Alors
instructions lorsque la valeur est dans liste2
Sinon Si ...

Sinon Si expr = une des valeurs de la listeN Alors
instructions lorsque la valeur est dans listeN
Sinon
instructions lorsque la valeur de la variable
ne se trouve dans aucune des listes précédentes

FinSi

Sélective Selon (conditions)

Si condition1 Alors
instructions lorsque la condition1 est vraie
Sinon Si condition2 Alors
instructions lorsque la condition2 est vraie
Sinon Si ...

Sinon Si conditionN Alors
instructions lorsque la conditionN est vraie
Sinon
instructions à exécuter quand aucune
des conditions précédentes n’est vérifiée

FinSi

Unisciel algoprog – if00cours-texte [if], May 14, 2018 19

4.2 Sélective Selon (listes de valeurs)

Sélective Selon (listes de valeurs)
Elle évalue l’expression et n’exécute que les instructionsI qui correspondent à la valeur
ordinale Ci (c.-à-d. de type entier ou caractère). La clause Cas Autre est facultative et
permet de traiter tous les cas non traités précédemment. Il s’agit de l’instruction multi-
conditionnelle classique des langages.

Sélective Selon (listes de valeurs)

switch(expression)
{
case C1:

instructions1;
break;

...
case Cn:

instructionsN;
break;

default:
instructionsD

}

Remarque
Veillez à ne pas faire apparaitre une même valeur dans plusieurs listes.

C/C++ : Rupture
L’achèvement d’un énoncé n’est pas automatique : il faut l’expliciter à l’aide de l’ins-
truction break.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 20

Selon v.s. Si
Le Selon est moins général que le Si :

• L’expression doit être une valeur discrète (Entier ou Caractère).

• Les cas doivent être des constantes (pas de variables).

Si ces règles sont vérifiées, le Selon est plus efficace qu’une série de Si en cascade (car
l’expression du Selon n’est évaluée qu’une seule fois et non en chacun des Si).

Unisciel algoprog – if00cours-texte [if], May 14, 2018 21

4.3 Exemple : Jour de la semaine en clair

L’algorithme saisit un jour de la semaine sous forme d’un nombre entier (0 pour di-
manche, 1 pour lundi...) et affiche en clair le jour de la semaine pour un jour travaillé et
«Week-end » pour le samedi ou le dimanche. Dans tous les autres cas, il affiche «Numéro
de jour non valide ».

Programme @[pgjsem1.cpp]

#include <iostream>
using namespace std;

int main()
{
int jr;
cout<<"Numero du jour? ";
cin>>jr;
switch (jr)
{

case 1:
cout<<"lundi"<<endl;
break;

case 2:
cout<<"mardi"<<endl;
break;

case 3:
cout<<"mercredi"<<endl;
break;

case 4:
cout<<"jeudi"<<endl;
break;

case 5:
cout<<"vendredi"<<endl;
break;

case 0: case 6:
cout<<"Week-end"<<endl;
break;

default:
cout<<"Numero de jour non valide"<<endl;

}
}

Unisciel algoprog – if00cours-texte [if], May 14, 2018 22

4.4 Opérateur Si-expression

Opérateur Si-expression

exprBool ? exprAlors : exprSinon

Explication

Évalue l’expression logique exprBool et si elle est vérifiée, effectue l’expression exprAlors,
sinon l’expression exprSinon. Les exprAlors et exprSinon doivent être du même type.

Remarque
Cette syntaxe très raccourcie doit être réservée à de petits tests.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 23

5 Spécificités C/C++

5.1 Ordre d’évaluation des opérandes

C/C++ : Ordre d’évaluation des opérandes
Elle n’est pas spécifié, excepté pour les opérateurs && et ||. Il faut en tenir compte lorsque
l’un des opérandes est dépendant de l’autre, ce qui se produire en utilisant des opérateurs
à effet de bord tels que =, ++ ou +=.

Unisciel algoprog – if00cours-texte [if], May 14, 2018 24

6 Références générales

Voici quelques liens concernant l’algèbre de Boole.

• Historique : George Boole
http://fr.wikipedia.org/wiki/George_Boole

• Algèbre de Boole :
http://fr.wikiversity.org/wiki/Logique_de_base/Alg%C3%A8bre_de_Boole

http://fr.wikipedia.org/wiki/George_Boole
http://fr.wikiversity.org/wiki/Logique_de_base/Alg%C3%A8bre_de_Boole

	Conditions
	Opérateurs de comparaison
	Condition simple
	Opérateurs logiques
	Propriétés des opérateurs logiques
	Condition composée
	Priorité des opérateurs
	Évaluation paresseuse des opérateurs Et et Ou
	Exemples: Priorité et évaluation

	Sélectives Si, Si-Alors et Si-Sinon-Si
	Sélective Si
	Sélective Si-Alors
	Remarques
	Exemple: Sélectives Si et Si-Alors
	Sélective Si-Sinon-Si

	Arbre de choix
	Compléments
	Sélective Selon
	Sélective Selon (listes de valeurs)
	Exemple: Jour de la semaine en clair
	Opérateur Si-expression

	Spécificités C/C++
	Ordre d'évaluation des opérandes

	Références générales

