
Structures conditionnelles [if]
Exercices de cours

Karine Zampieri, Stéphane Rivière

Unisciel algoprog Version 14 mai 2018

Table des matières

1 Appréhender le cours 2
1.1 Évaluation d’expressions logiques / qzlogiques 2
1.2 Inverse d’un entier / pginverse . 4
1.3 Valeur absolue d’un entier / pgvabsolue 5

2 Appliquer le cours 6
2.1 Différence positive de deux entiers / pgpositive 6
2.2 Majorité d’un individu / pgmajorite . 8
2.3 Validation d’un module / pgvmodule . 10
2.4 Facturation avec remise / pgremise . 12

3 Approfondir le cours 13
3.1 Sexe d’un individu / pgsexe . 13
3.2 Calculette algébrique / pgcalcul . 15
3.3 Bonjour / pgbonjour . 17

alg - Exercices de cours (Solution)

Mots-Clés Structures conditionnelles �
Difficulté • ◦ ◦ (2 h) �

1

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 2

1 Appréhender le cours

1.1 Évaluation d’expressions logiques / qzlogiques

Objectif
Cet exercice évalue des expressions logiques.

Écrivez un algorithme qui saisit deux entiers dans n1 et n2.
Affichez l’invite :

Deux entiers?

On saisit 15 et 4.
Évaluez les conditions simples (où <- désigne l’affectation) :

c1 <- n1 < n2
c2 <- ’A’ < ’B’
c3 <- "Arb uste" < "Arbre"

Solution simple
(c1) eval(15<4)| donne \lstinlineFaux@.
(c2) eval(’A’<’B’) donne Vrai car l’ordre alphabétique est respecté dans les codes ASCII
attribués aux lettres.
(c3) eval("Arb uste"<"Arbre") donne Vrai car l’espace est avant les lettres.

Quelle(s) est/sont la/les caractéristique(s) de l’évaluation des expressions logiques ?

Solution simple
Il y en a deux :

• Elle s’effectue de la gauche vers la droite.

• Il y a une évaluation paresseuse des opérateurs Et et Ou.

Évaluez les expressions logiques :

b1 <- c1 Et c2
b2 <- c1 Ou c2
b3 <- (c1 Et c2) Ou c3
b4 <- c1 Et (c2 Ou c3)

Solution simple
(b1) c1 est Faux et c2 est Vrai ce qui donne Faux Et Vrai donc Faux.
(b2) Ici on a Faux Ou Vrai donc Vrai.
(b3) Le groupe de conditions situé à gauche donne le résultat intermédiaire Faux, et c3

est Vrai. Le résultat global est Faux Ou Vrai donc Vrai.
(b4) c1 est Faux et le groupe de conditions qui suit donne Vrai. Le résultat global est
Faux Et Vrai donc Faux.

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 3

Écrivez les expressions logiques de la question précédente dans votre langage.

Affichez les variables (où [x] désigne le contenu de x) :

c1=[c1] c2=[c2] c3=c3
b1=[b1] b2=[b2] b3=[b3] b4=[b4]

Testez.

Solution simple

Deux entiers? 15 4
c1=Faux c2=Vrai c3=Vrai
b1=Faux b2=Vrai b3=Vrai b4=Faux

Validez votre algorithme avec la solution.

Solution alg @[qzlogiques1.alg]

Algorithme PGLogiques1
Variable n1 , n2 : Entier
Variable c1 , c2 , c3 : Booléen
Variable b1 , b2 , b3 , b4 : Booléen
Début
| Afficher ("Deux entiers? ")
| Saisir (n1 , n2)
| c1 <- n1 < n2
| c2 <- ’A’ < ’B’
| c3 <- "Arb uste" < "Arbre"
| b1 <- c1 Et c2
| b2 <- c1 Ou c2
| b3 <- (c1 Et c2) Ou c3
| b4 <- c1 Et (c2 Ou c3)
| Afficher ("c1=" , c1 , " c2=" , c2 , " c3=" , c3)
| Afficher ("b1=" , b1 , " b2=" , b2 , " b3=" , b3 , " b4=" , b4)

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 4

1.2 Inverse d’un entier / pginverse

Écrivez un algorithme qui saisit un entier.
Affichez l’invite :

Votre entier?

En utilisant une structure Si, affichez :

• L’inverse de l’entier s’il n’est pas nul.

• Sinon le message « l’entier est nul ».

Testez. Exemples d’exécution :

Un entier? 12
1/12 vaut 0.0833333333

Un entier? 0
L’entier est nul

Validez votre algorithme avec la solution.

Solution alg @[pginverse1.alg]

Algorithme PGInverse1
Variable x : Entier
Début
| Afficher ("Un entier? ")
| Saisir (x)
| Si (x <> 0) Alors
| | Afficher ("1/" , x , " vaut " , 1.0 / x)
| Sinon
| | Afficher ("L’entier est nul")
| FinSi

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 5

1.3 Valeur absolue d’un entier / pgvabsolue

Écrivez un algorithme qui saisit un entier.
Affichez l’invite :

Un entier?

Calculez puis affichez sa valeur absolue.

Testez. Exemples d’exécution :

Votre entier? 6
==> La valeur absolue est 6

Votre entier? -8
==> Inversion du signe
==> La valeur absolue est 8

Validez votre algorithme avec la solution.

Solution alg @[pgvabsolue1.alg]

Algorithme PGVabsolue1
Variable n : Entier
Début
| Afficher ("Votre entier? ")
| Saisir (n)
| Si (n < 0) Alors
| | n <- - n
| | Afficher ("==> Inversion du signe")
| FinSi
| Afficher ("==> La valeur absolue est " , n)

Fin

Solution commentée
L’alternative Si-Alors évite de mettre du code pour rien. C’est le cas ici : si la valeur est
positive, il n’y a rien à faire. Par contre si elle est négative, il faut inverser le signe pour
la rendre positive. C’est ce qu’effectue l’algorithme après la saisie de la valeur entière.

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 6

2 Appliquer le cours

Méthode

Reprenons la méthode élémentaire d’élaboration d’algorithme vue dans le module @[Struc-
tures de base] et complétons-la en y ajoutant deux nouveaux points (N) :

• Faites attention au problème posé.....

• Résolvez les exercices...

• (N) Ayez à l’esprit le fonctionnement des nouvelles instructions étudiées.

• Transcrivez l’analyse en un algorithme.

• Soumettez votre algorithme à une ou deux traces d’exécution.

• (N) Vérifiez si votre algorithme permet de traiter correctement tous les cas permis
par l’énoncé.

Vous vous apercevrez que le style de rédaction des énoncés des exercices change notam-
ment sur trois points :

1. Les énoncés sont rédigés dans un style moins académique, plus proche du langage
de tous les jours, que ceux des modules précédent. Par exemple, au lieu d’écrire
« écrivez un programme qui demande un nombre représentant une température... »
nous écrirons « écrivez un programme qui saisit une température.... ». Ou encore,
au lieu de « écrivez un programme qui demande un nombre compris entre 0 et 20
représentant une note.... » nous écrirons plus volontiers « écrivez un programme
qui saisit une note comprise entre 0 et 20.... », ou encore « écrivez un programme
qui saisit une note.... ».

2. Ces énoncés ne mettent plus en avant les valeurs en entrée et les valeurs en sortie.
Il faut le plus souvent les déduire de l’énoncé et de l’exemple d’exécution.

3. Ces énoncés sont plus imprécis. Cela correspond davantage à la manière dont les
utilisateurs énoncent réellement leurs problèmes. C’est au concepteur de lever les
ambigüıtés, soit par déduction logique, soit en se documentant, soit en interrogeant
l’utilisateur. Nos imprécisions seront néanmoins limitées. Par exemple, s’il n’y a pas
d’ambigüıté, les châınes de caractères ne sont pas toujours entourées de guillemets.

2.1 Différence positive de deux entiers / pgpositive

Écrivez un algorithme qui saisit deux entiers dans n1 et n2.
Affichez l’invite :

Deux entiers?

Calculez la différence positive des deux entiers dans rs (entier).

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 7

Aide méthodologique
Au choix :

• Si n1<n2 alors c’est n2-n1 sinon c’est n1<n2.

• Calculez la différence des deux entiers dans rs puis utilisez une structure Si-Alors

pour positiver le résultat.

Affichez (où [x] désigne le contenu de x) :

La difference positive est [rs]

Testez. Exemples d’exécution :

Deux entiers? -6 3
La difference positive est 9

Deux entiers? 10 2
La difference positive est 8

Validez votre algorithme avec la solution.

Solution alg : Première méthode @[pgpositive1.alg]

Algorithme PGPositive1
Variable n1 , n2 : Entier
Variable rs : Entier
Début
| Afficher ("Deux entiers? ")
| Saisir (n1 , n2)
| Si (n1 < n2) Alors
| | rs <- n2 - n1
| Sinon
| | rs <- n1 - n2
| FinSi
| Afficher ("La difference positive est " , rs)

Fin

Solution alg : Deuxième méthode @[pgpositive2.alg]

Algorithme PGPositive2
Variable n1 , n2 : Entier
Variable rs : Entier
Début
| Afficher ("Deux entiers? ")
| Saisir (n1 , n2)
| resultat <- n2 - n1
| Si (rs < 0) Alors
| | rs <- - rs
| FinSi
| Afficher ("La difference positive est " , rs)

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 8

2.2 Majorité d’un individu / pgmajorite

Écrivez un algorithme qui saisit l’âge d’un individu dans age (entier).
Affichez l’invite :

Votre age?

Définissez une constante MAJORITE=18 (âge de la majorité).

En utilisant une structure Si, affichez :

• S’il est ou non majeur (âge supérieur ou égal à MAJORITE).

• Ainsi que le nombre d’années depuis ou dans pour être majeur.

Testez. Exemples d’exécution :

Votre age? 12
==> Vous n’êtes pas majeur
==> Majorite dans 6 annees

Votre age? 40
==> Vous êtes majeur
==> Majorite depuis 22 annees

Définissez maintenant les constantes :

• RETRAITE=62 (âge minimum du départ à la retraite).

• COTISEE=42 (nombre d’années de cotisation).

Saisissez la durée cotisée dans duree (entier).
Affichez l’invite :

Durée cotisation?

Affichez alors s’il peut partir à la retraite (âge supérieur ou égal à RETRAITE et durée cotisée
supérieure ou égale à COTISEE). Dans le cas de la négative, affichez le nombre d’années
restants.

Testez. Exemple d’exécution :

Votre age? 40
==> Vous êtes majeur
Majorite depuis 22 annees
Durée cotisation? 22
Vous ne pouvez pas encore partir à la retraite
Depart prevu dans 22 annees

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 9

Validez votre algorithme avec la solution.

Solution alg @[pgmajorite1.alg]

Algorithme PGMajorite1
Constante MAJORITE <- 18
Constante RETRAITE <- 62
Constante COTISEE <- 42
Variable age , duree : Entier
Début
| Afficher ("Votre age? ")
| Saisir (age)
| Si (age >= MAJORITE) Alors
| | Afficher ("==> Vous êtes majeur")
| | Afficher ("Majorite depuis " , age - MAJORITE , " annees")
| Sinon
| | Afficher ("==> Vous n’êtes pas majeur")
| | Afficher ("Majorite dans " , MAJORITE - age , " annees")
| FinSi
| Afficher ("Durée cotisation? ")
| Saisir (duree)
| Si (age >= RETRAITE Et duree >= COTISEE) Alors
| | Afficher ("Vous pouvez partir à la retraite")
| Sinon
| | Afficher ("Vous ne pouvez pas encore partir à la retraite")
| | Afficher ("Depart prevu dans " , RETRAITE - age , " annees")
| FinSi

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 10

2.3 Validation d’un module / pgvmodule

Objectif
Un module est sanctionné par une note d’oral de coefficient 1 et une note d’écrit de
coefficient 2. La moyenne obtenue doit être supérieure ou égale à 10 pour valider le
module. Cet exercice calcule le résultat (reçu, refusé) d’un étudiant à un module.

Écrivez un algorithme qui saisit :

• La note d’orale d’un étudiant dans no (réel).

• Sa note d’écrit dans ne (réel).

Affichez les invites :

Note d’écrit?
Note d’oral?

Supposez des notes positives valides entre 0 et 20.

Calculez la moyenne du module dans moyenne (réel) définie par :

moyenne = (2ne + no)/3

Affichez (où [x] désigne le contenu de x) :

==> Moyenne [moyenne]

Affichez le résultat (recu, refus) en comparant sa moyenne à 10 au moyen de l’alternative
Si.

Testez. Exemples d’exécution :

Note d’écrit? 8.5
Note d’oral? 14
==> Moyenne 10.3333333333
==> reçu

Note d’écrit? 11
Note d’oral? 5
==> Moyenne 9
==> refusé

Validez votre algorithme avec la solution.

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 11

Solution alg @[pgvmodule1.alg]

Algorithme pg_vmodule1
Variable ne , no : Réel
Variable moyenne : Réel
Début
| Afficher ("Note d’écrit? ")
| Saisir (ne)
| Afficher ("Note d’oral? ")
| Saisir (no)
| moyenne <- (2 * ne + no) / 3
| Afficher ("==> Moyenne " , moyenne)
| Si (moyenne >= 10) Alors
| | Afficher ("==> reçu")
| Sinon
| | Afficher ("==> refusé")
| FinSi

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 12

2.4 Facturation avec remise / pgremise

Écrivez un algorithme qui saisit un prix hors taxes.

Calculez le prix TTC correspondant (avec un taux de TVA constant de 19.6%).

Établissez ensuite une remise dont le taux dépend de la valeur ainsi obtenue, à savoir :

• 0% pour un montant inférieur à 1 000e.

• 1% pour un montant supérieur ou égal à 1 000e et inférieur à 2 000e.

• 3% pour un montant supérieur ou égal à 1 000e et inférieur à 5 000e.

• 5% pour un montant supérieur ou égal à 5 000e.

Affichez le prix TTC ainsi que la remise.

Testez.

Validez votre algorithme avec la solution.

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 13

3 Approfondir le cours

3.1 Sexe d’un individu / pgsexe

Écrivez un algorithme qui saisit un caractère parmi ’m’, ’h’, ’g’, ’f’ dans sexe.
Affichez l’invite :

Votre sexe parmi m,h,g,f?

Affichez le sexe de l’individu selon :

• « Masculin » si ’m’ (Masculin), ’h’ (Homme) ou ’g’ (Garçon)

• « Féminin » si ’f’ (Féminin, Femme, Fille)

• « Saisie incorrecte » dans tous les autres cas.

Testez. Exemples d’exécution :

Votre sexe parmi m,h,g,f? h
Vous êtes du sexe Masculin

Votre sexe parmi m,h,g,f? x
Saisie incorrecte

Validez votre algorithme avec la solution.

Solution alg : Structure Selon @[pgsexe1.alg]

Algorithme PGSexe1
Variable sexe : Chaîne
Début
| Afficher ("Votre sexe parmi m,h,g,f? ")
| Saisir (sexe)
| Selon Sexe
| | Cas ’m’ , ’h’ , ’g’
| | | Afficher ("Vous êtes du sexe Masculin")
| | Cas ’f’
| | | Afficher ("Vous êtes du sexe Féminin")
| | Cas Autre
| | | Afficher ("Saisie incorrecte")
| FinSelon

Fin

Solution alg : Structure Si @[pgifsexe2.alg]

Algorithme PGSexe2
Variable sexe : Chaîne
Début
| Afficher ("Votre sexe parmi m,h,g,f? ")
| Saisir (sexe)

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 14

| Si (sexe = ’m’ Ou sexe = ’h’ Ou sexe = ’g’) Alors
| | Afficher ("Vous êtes du sexe Masculin")
| Sinon Si (sexe = ’f’) Alors
| | Afficher ("Vous êtes du sexe Féminin")
| Sinon
| | Afficher ("Saisie incorrecte")
| FinSi

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 15

3.2 Calculette algébrique / pgcalcul

Écrivez un algorithme qui saisit :

• Un entier dans n1.

• Un caractère dans op.

• Un deuxième entier dans n2.

Affichez l’invite :

n1 @ n2?

Déclarez un entier rs qui mémorisera le calcul de l’opération correspondante.

Déclarez un booléen ok et initialisez-le à Vrai :
il vaudra Vrai si le calcul a été effectué, Faux sinon.

En utilisant une structure conditionnelle (Selon ou Si) :

• Traitez les cas où op est l’un des opérateurs ’+’ (addition), ’-’ (soustraction), ’*’

ou ’x’ (multiplication) en mémorisant le résultat du calcul dans rs.

• Traitez les cas où op est l’opérateur ’/’ (division) ou ’%’ (modulo). Dans ces deux
cas, l’opération est réalisable si n2 n’est pas nul. Mettez Faux dans ok si elle n’a pas
été effectuée.

• Enfin dans tous les autres cas, l’opération n’est pas valide :
mettez Faux dans ok.

Affichez l’opération effectuée si ok est resté à Vrai, le message d’erreur sinon.

[n1] [op] [n2] donne [rs] # si ok
Opérateur erroné ou division par zéro # message d’erreur

Testez. Exemples d’exécution :

n1 @ n2? 3 x -3
3 x -3 donne -9

n1 @ n2? 6 / 0
Opérateur erroné ou division par zéro

Validez votre algorithme avec la solution.

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 16

Solution alg @[pgcalcul1.alg]

Algorithme PGCalcul1
Variable n1 , n2 : Entier
Variable op : Chaîne
Variable rs : Entier
Variable ok : Booléen
Début
| Afficher ("n1 @ n2? ")
| Saisir (n1 , op , n2)
| ok <- Vrai
| Selon op
| | Cas ’+’
| | | rs <- n1 + n2
| | Cas ’-’
| | | rs <- n1 - n2
| | Cas ’*’ , ’x’
| | | rs <- n1 * n2
| | Cas ’/’
| | | Si (n2 <> 0) Alors
| | | | rs <- DivEnt (n1 , n2)
| | | Sinon
| | | | ok <- Faux
| | | FinSi
| | Cas ’%’
| | | Si (n2 <> 0) Alors
| | | | rs <- Modulo (n1 , n2)
| | | Sinon
| | | | ok <- Faux
| | | FinSi
| | Cas Autre
| | | ok <- Faux
| FinSelon
| Si (ok) Alors
| | Afficher (n1 , " " , op , " " , n2 , " donne " , rs)
| Sinon
| | Afficher ("Opérateur erroné ou division par zéro")
| FinSi

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 17

3.3 Bonjour / pgbonjour

Écrivez un algorithme qui saisit une heure dans hr (entier).
Affichez l’invite :

Quelle heure est-il?

Affichez la salutation selon :

• « Bonjour » si hr est dans [0..18[

• « Bonsoir » si hr est dans [18..22[

• « Bonne nuit » si hr est dans [22..24[

• « Heure invalide » dans tous les autres cas

Testez. Exemples d’exécution :

Quelle heure est-il? 19
Bonsoir

Quelle heure est-il? 25
Heure invalide

Validez votre algorithme avec la solution.

Solution alg : Première solution @[pgbonjour0.alg]

Algorithme PGBonjour0
Variable hr : Entier
Début
| Afficher ("Quelle heure est-il? ")
| Saisir (hr)
| Si (0 <= hr Et hr < 18) Alors
| | Afficher ("Bonjour")
| Sinon
| | Si (18 <= hr Et hr < 22) Alors
| | | Afficher ("Bonsoir")
| | Sinon
| | | Si (hr <= 22 Et hr < 24) Alors
| | | | Afficher ("Bonne nuit")
| | | Sinon
| | | | Afficher ("Heure invalide")
| | | FinSi
| | FinSi
| FinSi

Fin

Unisciel algoprog – if00exerc-texte [if], May 14, 2018 18

Solution alg : Solution améliorée @[pgbonjour1.alg]

Algorithme pgBonjour1
Variable hr : Entier
Début
| Afficher ("Quelle heure est-il? ")
| Saisir (hr)
| Si (hr < 0 Ou 24 <= hr) Alors
| | Afficher ("Heure invalide")
| Sinon
| | Si (hr < 18) Alors
| | | Afficher ("Bonjour")
| | Sinon
| | | Si (hr < 22) Alors
| | | | Afficher ("Bonsoir")
| | | Sinon
| | | | Afficher ("Bonne nuit")
| | | FinSi
| | FinSi
| FinSi

Fin

Solution commentée

• Première solution : Notez qu’il faut effectivement vérifier que l’heure est dans l’in-
tervalle. En n’écrivant que la deuxième partie de la condition, pour une heure
négative (donc invalide), on afficherait :

Bonsoir

• Solution améliorée : Cette version est une bonne solution car elle effectue le mi-
nimum de tests. Chaque condition est simple, outre la première qui vérifie que
l’heure est correcte, contrairement à la version näıve qui emploie trois conditions
composées.

	Appréhender le cours
	Évaluation d'expressions logiques / qzlogiques
	Inverse d'un entier / pginverse
	Valeur absolue d'un entier / pgvabsolue

	Appliquer le cours
	Différence positive de deux entiers / pgpositive
	Majorité d'un individu / pgmajorite
	Validation d'un module / pgvmodule
	Facturation avec remise / pgremise

	Approfondir le cours
	Sexe d'un individu / pgsexe
	Calculette algébrique / pgcalcul
	Bonjour / pgbonjour

