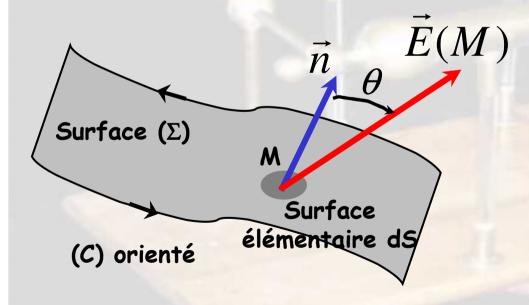


I - Flux du champ électrostatique

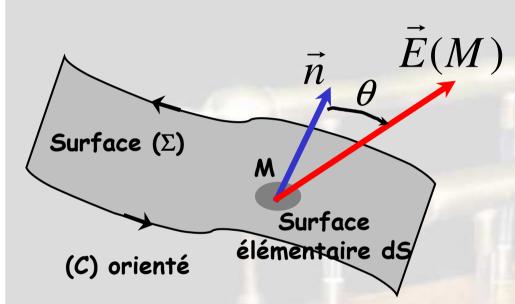
Définition :

Soit E(M) un champ électrostatique défini dans un domaine de l'espace.



Soit (Σ) une surface dont le contour (C) est orienté de manière arbitraire.

Le choix de cette orientation conditionne le choix du vecteur normal unitaire à la surface élémentaire dS centrée en M (règle du tire-bouchon ou de la main droite).



On appelle flux élémentaire d Φ du champ E à travers la surface d $\mathcal{E}(M)$ orientée la quantité :

$$d\Phi = \vec{E}(M).\vec{n} \ dS$$

Le flux total du champ E à travers toute la surface est alors :

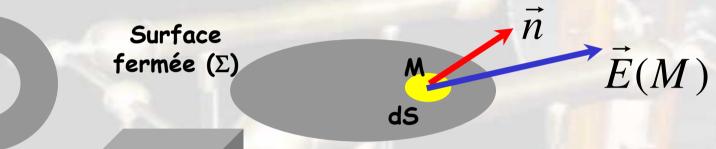
$$\Phi = \iint_{(\Sigma)} \vec{E}(M) . \vec{n} \ dS$$

Intérêt physique du flux : $d\Phi = E(M)\cos\theta \ dS$

Le flux « compte » les lignes de champ qui traversent la surface (le flux est maximal lorsque θ = 0 et nul pour θ = π / 2).

Cas d'une surface fermée :

Exemples de surfaces fermées (elles délimitent un volume fini) :



Le vecteur normal n est choisi, par convention, dirigé vers l'extérieur du volume délimité par la surface fermée.

On définit alors le flux sortant à travers la surface fermée, que l'on note :

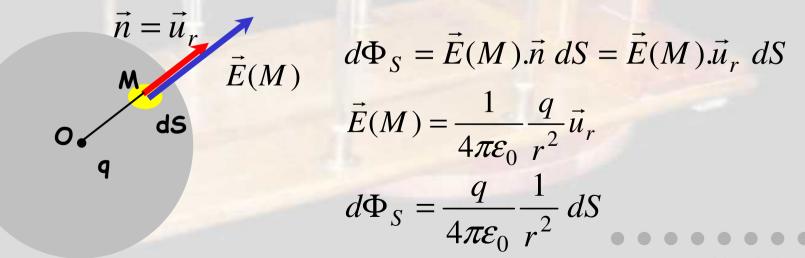
$$\Phi_S = \oint \int_{(\Sigma)} \vec{E}(M) \cdot \vec{n} \ dS$$

II - Le théorème de Gauss

Le théorème de Gauss permet d'évaluer le flux du champ électrostatique sortant d'une surface fermée, en fonction des charges contenues à l'intérieur de cette surface.

On considère une charge ponctuelle q placée en O et on choisit comme surface fermée la sphère $\Sigma(O,r)$ de centre O et de rayon r.

On évalue le flux sortant du champ électrique à travers $\Sigma(O,r)$.

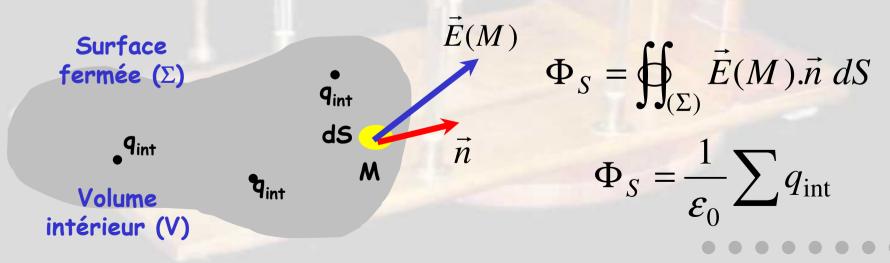


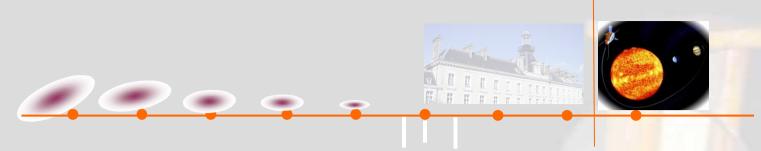
 $\Sigma(O,r)$

En intégrant sur toute la sphère (sur laquelle r est constant) :

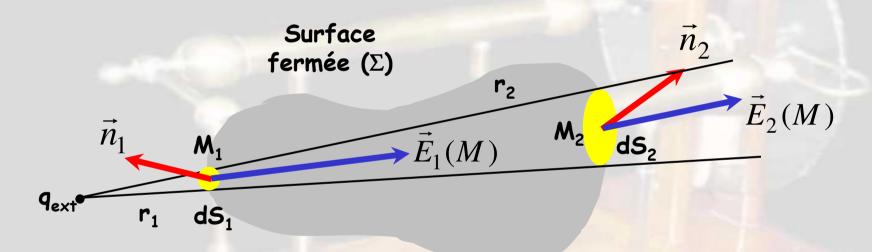
$$\Phi_{S} = \frac{q}{4\pi\varepsilon_{0}} \frac{1}{r^{2}} S_{sphère} = \frac{q}{4\pi\varepsilon_{0}} \frac{1}{r^{2}} (4\pi r^{2}) \quad soit \quad \Phi_{S} = \frac{q}{\varepsilon_{0}}$$

Généralisation : on considère des charges ponctuelles q_{int} placées à l'intérieur d'un volume délimité par une surface fermée (Σ) quelconque.





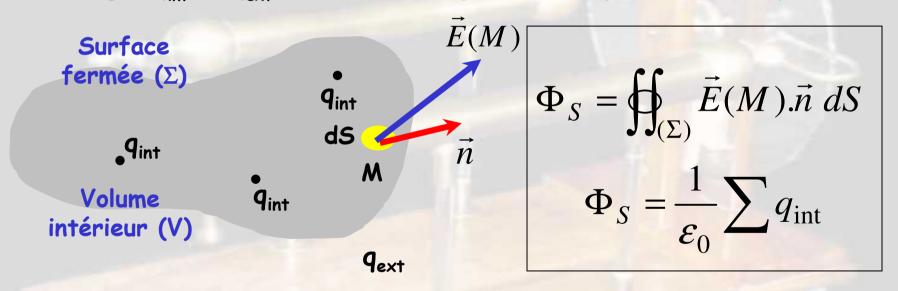
Cas de charges extérieures à la surface fermée :



Le flux sortant du champ créé par la charge $q_{\rm ext}$ à travers la surface fermée est nul (les flux à travers dS_1 et dS_2 se compensent deux à deux : les champs diminuent comme $1 / r^2$ mais les surfaces dS augmentent comme r^2).

Énoncé du théorème de Gauss :

Les charges q_{int} et q_{ext} créent un champ E en tout poi<mark>nt M</mark> de l'espace.



Le flux du champ sortant d'une surface fermée est égal au produit par $1/\epsilon_0$ de la somme des charges intérieures à la surface ; ce flux est indépendant de leur position et de la présence de charges extérieures.

Cas d'une répartition volumique de charges :

Soit ρ la densité volumique de charges.

Surface
$$\vec{E}(M)$$
 fermée (Σ) ds \vec{n} Volume intérieur (V)

$$\Phi_{S} = \oint \int_{(\Sigma)} \vec{E}(M) \cdot \vec{n} \, dS = \frac{1}{\varepsilon_{0}} \iiint_{(V)} \rho(P) d\tau$$

Topographie du champ électrostatique Nombre de lignes: les lignes partant de + 2q sont deux fois plus nombreuses que celles qui arrivent en - q.

Olivier GRANIER

III - Applications du théorème de Gauss

Méthode de raisonnement : choix d'une surface de Gauss (Σ) puis :

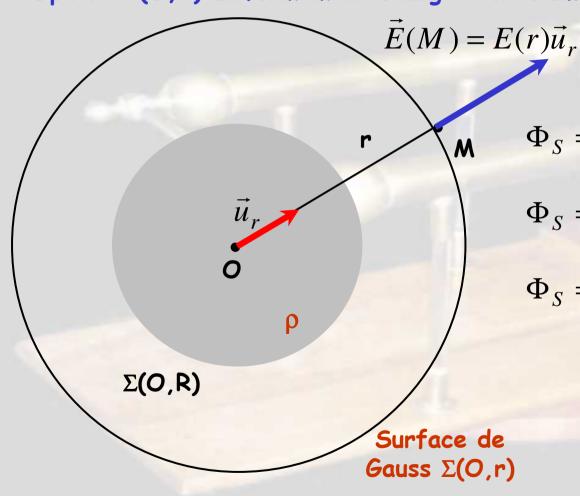
$$\Phi_S = \oint \int_{(\Sigma)} \vec{E}(M) \cdot \vec{n} \, dS = \frac{1}{\varepsilon_0} \sum q_{\text{int}}$$

Calcul direct du flux en utilisant les propriétés de symétrie fortes du champ (si elles existent!)

Calcul des charges intérieures à la surface de Gauss choisie.

L'identification des deux expressions du flux sortant donne ensuite la valeur du champ en tout point de l'espace.

1 - Sphère $\Sigma(O,R)$ uniformément chargée en volume :



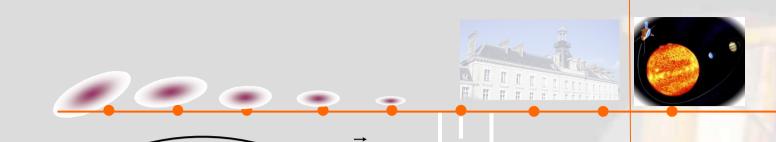
$$\Phi_S = \oint \int_{(\Sigma)} \vec{E}(M) \cdot \vec{n} \ dS$$

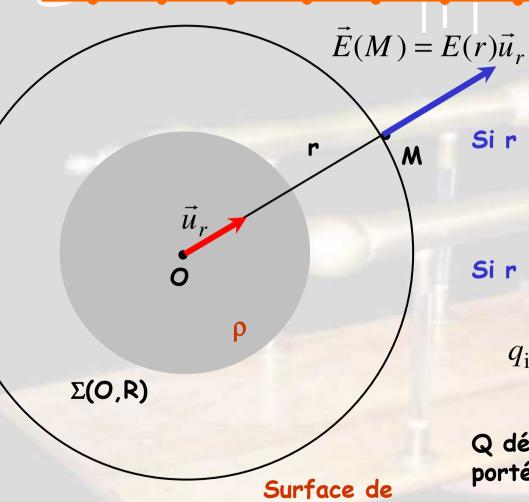
$$\Phi_S = \oint \int_{(\Sigma)} E(r) \vec{u}_r \cdot \vec{u}_r \ dS$$

$$\Phi_{S} = \iint_{(\Sigma)} E(r)dS = E(r)S_{\Sigma(O,r)}$$

$$\Phi_S = 4\pi \ r^2 E(r)$$

• • • • • • •





Gauss $\Sigma(O,r)$

Sir > R:

$$q_{\rm int} = \frac{4}{3}\pi R^3 \rho = Q$$

Sir < R:

$$q_{\rm int} = \frac{4}{3}\pi r^3 \rho = \left(\frac{r}{R}\right)^3 Q$$

Q désignant la charge totale portée par la sphère $\Sigma(O,r)$.

L'application du théorème de Gauss donne alors :

Pour r > R :

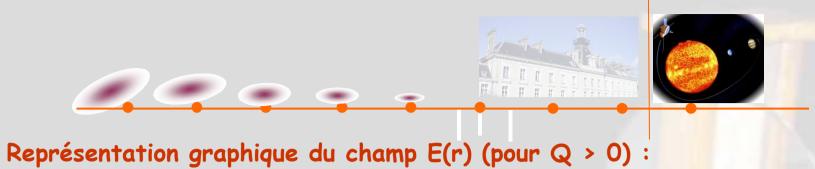
$$E(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \qquad et \qquad \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \vec{u}_r$$

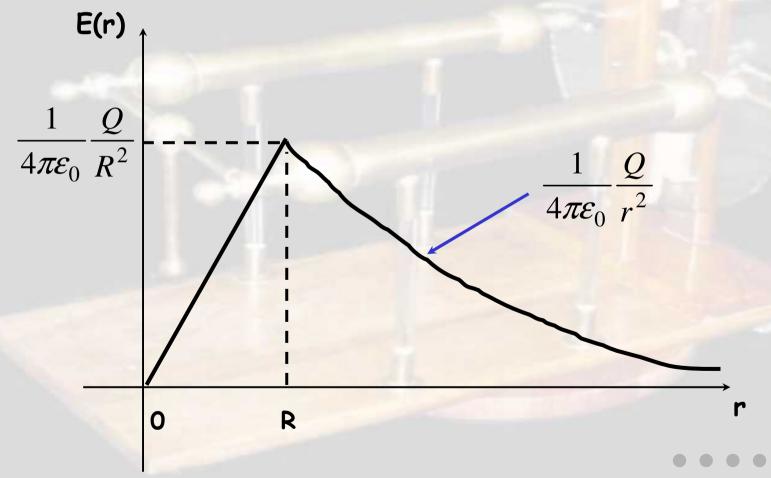
C'est équivalent au champ dû à une charge ponctuelle Q placée en O.

Pour r < R :

$$E(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} r \qquad et \qquad \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} r \, \vec{u}_r = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} \vec{r}$$

Le champ varie linéairement avec la distance au centre r (il est notamment nul au centre de la sphère).







Détermination du potentiel :

La relation intrinsèque entre le champ et le potentiel donne ici, en coordonnées sphériques :

$$\vec{E} = -\overrightarrow{grad} V \qquad \Rightarrow \qquad E(r) = -\frac{dV}{dr}$$

Pour r > R:

$$\frac{dV}{dr} = -\frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \qquad d'où \qquad V(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

en ayant choisit V(r) nul à l'infini (pas de charges à l'infini).

On retrouve l'expression du potentiel créé par une charge ponctuelle Q placée en O.

Pour r < R:

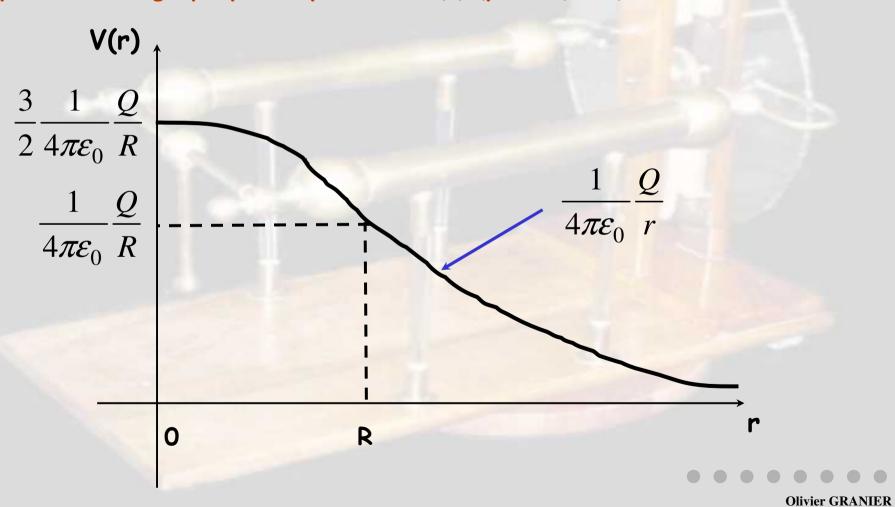
$$\frac{dV}{dr} = -\frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} r \qquad soit \qquad V(r) = -\frac{1}{2} \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} r^2 + K$$

La constante K s'obtient en écrivant la continuité du potentiel en r = R :

$$V(R) = -\frac{1}{2} \frac{1}{4\pi\varepsilon_0} \frac{Q}{R^3} R^2 + K = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R}$$
$$K = \frac{3}{2} \frac{1}{4\pi\varepsilon_0} \frac{Q}{R}$$

$$V(r) = \frac{1}{2} \frac{1}{4\pi\varepsilon_0} \frac{Q}{R} \left(3 - \frac{r^2}{R^2} \right)$$

Représentation graphique du potentiel V(r) (pour Q > 0) :





2 - Sphère uniformément chargée en surface :

L'application du théorème de Gauss donne alors :

Pour r > R : (avec Q = $4\pi R^2 \sigma$)

$$E(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \quad ; \quad \vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \vec{u}_r \quad ; \quad V(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

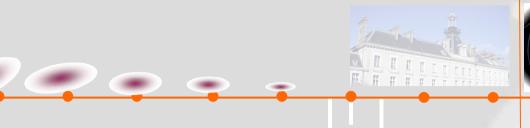
C'est équivalent au champ et au potentiel dus à une charge ponctuelle Q placée en O.

Pour r < R :

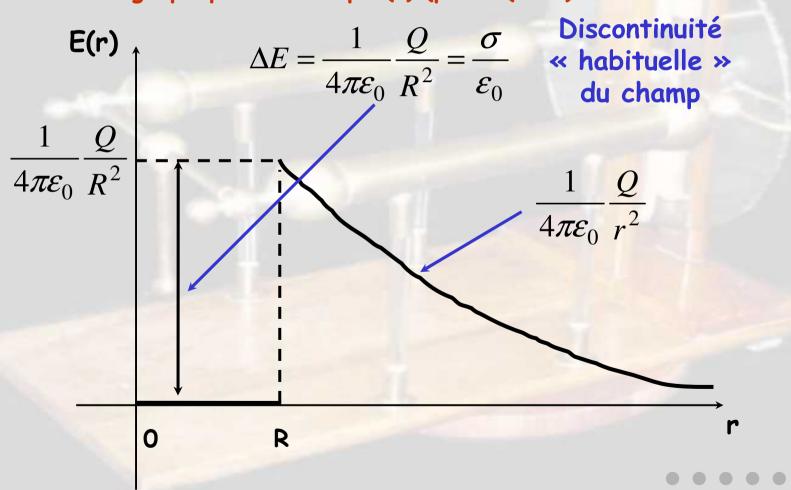
$$q_{\text{int}} = 0$$
 ; $\vec{E} = \vec{0}$; $V = cste = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R}$

Le champ est donc nul à l'intérieur de la sphère chargée en surface.

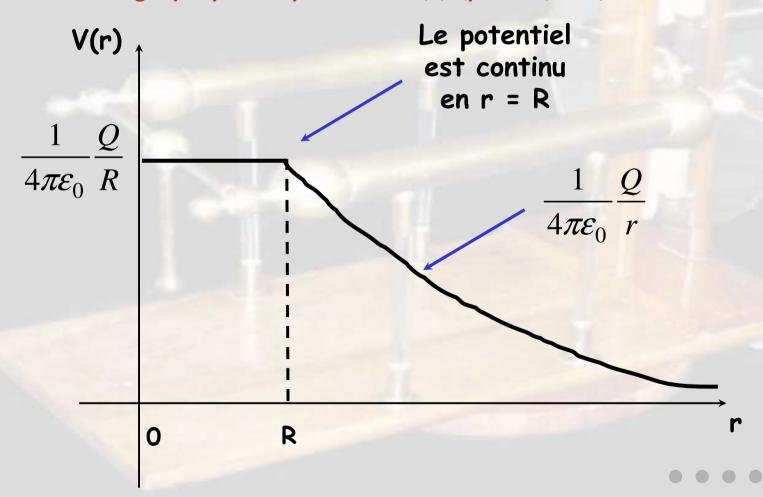
Il y a continuité du potentiel pour r = R.



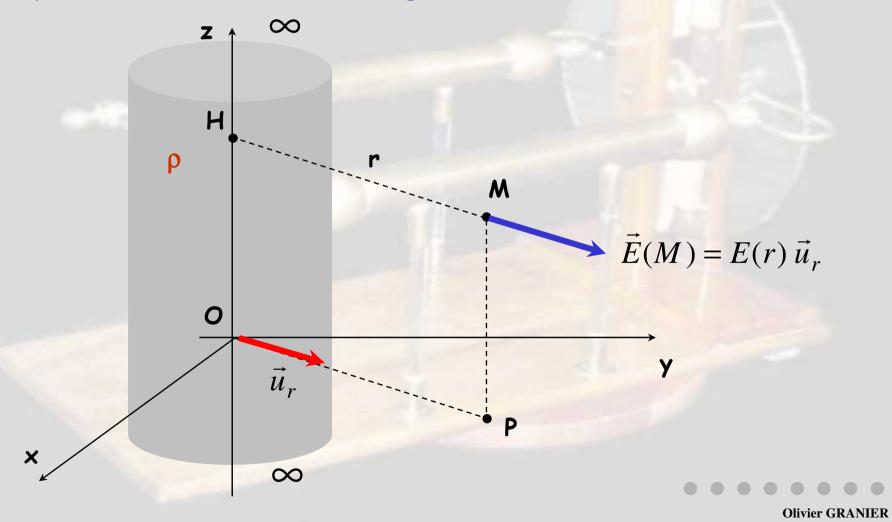
Représentation graphique du champ E(r) (pour Q > 0) :

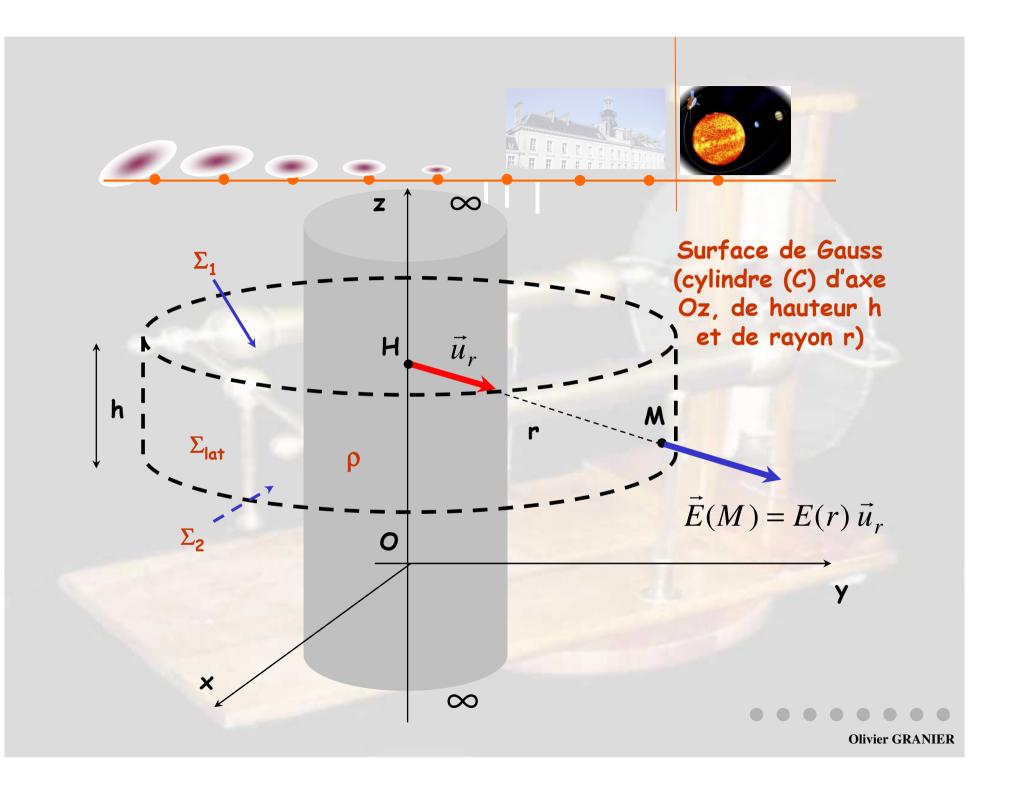


Représentation graphique du potentiel V(r) (pour Q > 0) :



3 - Cylindre infini uniformément chargé en volume :





Calcul direct du flux sortant :

$$\Phi_S = \iint_{(C)} \vec{E}(M) \cdot \vec{n} \ dS$$

$$\Phi_S = \iint_{(\Sigma_1)} E(r) \vec{u}_r . \vec{n}_1 dS + \iint_{(\Sigma_2)} E(r) \vec{u}_r . \vec{n}_2 dS + \iint_{(\Sigma_{lat})} E(r) \vec{u}_r . \vec{u}_r dS$$

$$= 0 \operatorname{car} \vec{u}_r \perp \vec{n}_1 \qquad = 0 \operatorname{car} \vec{u}_r \perp \vec{n}_2$$

$$\Phi_S = \iint_{(\Sigma_{lat})} E(r) \vec{u}_r . \vec{u}_r dS = E(r) \iint_{(\Sigma_{lat})} dS = 2\pi \ r \ h \ E(r)$$

$$\Phi_S = 2\pi \ r \ h \ E(r)$$

Calcul des charges intérieures :

Pour r > R :
$$q_{\text{int}} = \pi R^2 h \rho$$

Pour r
$$\langle R : q_{int} = \pi r^2 h \rho$$

L'application du théorème de Gauss donne alors :

Pour r > R :

$$E(r) = \frac{\rho}{2\varepsilon_0} \frac{R^2}{r} \qquad et \qquad \vec{E}(M) = \frac{\rho}{2\varepsilon_0} \frac{R^2}{r} \vec{u}_r$$

$$\vec{E}(M) = \frac{\rho}{2\varepsilon_0} \frac{R^2}{r} \vec{u}_r$$

Pour r < R:

$$E(r) = \frac{\rho}{2\varepsilon_0} r \qquad et \qquad \vec{E}(M) = \frac{\rho}{2\varepsilon_0} r \vec{u}_r$$

$$\vec{E}(M) = \frac{\rho}{2\varepsilon_0} r \, \vec{u}_r$$

Détermination du potentiel :

La présence de charges à l'infini ne permet pas d'annuler le potentiel à l'infini. On choisit arbitrairement la surface du cylindre (pour r = R) au potentiel nul, par exemple.

Pour r > R:
$$\frac{dV}{dr} = -\frac{\rho}{2\varepsilon_0} \frac{R^2}{r}$$
 $donc$ $V(r) = -\frac{\rho}{2\varepsilon_0} R^2 \ln(r) + K$

$$V(r) = \frac{\rho}{2\varepsilon_0} R^2 \ln(\frac{R}{r})$$

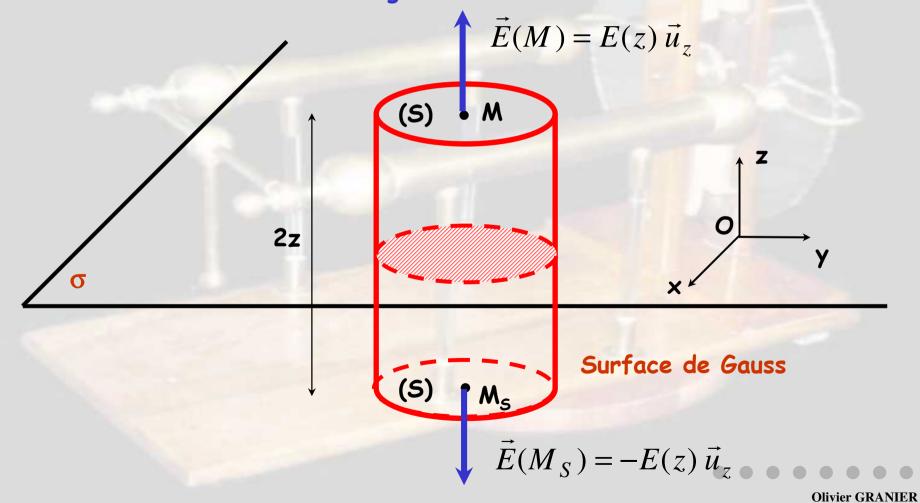
Pour r < R :

$$\frac{dV}{dr} = -\frac{\rho}{2\varepsilon_0}r \qquad donc \qquad V(r) = -\frac{1}{2}\frac{\rho}{2\varepsilon_0}r^2 + K'$$

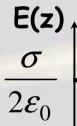
Par continuité du potentiel en r = R, on obtient :

$$V(r) = \frac{\rho}{4\varepsilon_0} \left(R^2 - r^2 \right)$$

4 - Plan infini uniformément chargé en surface :



Représentation graphique du champ E(z) (pour $\sigma > 0$):

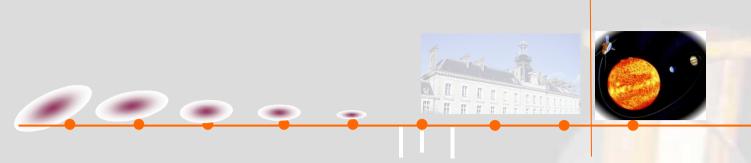


$$\Delta E = \frac{\sigma}{\varepsilon_0}$$

0

Discontinuité « habituelle » du champ

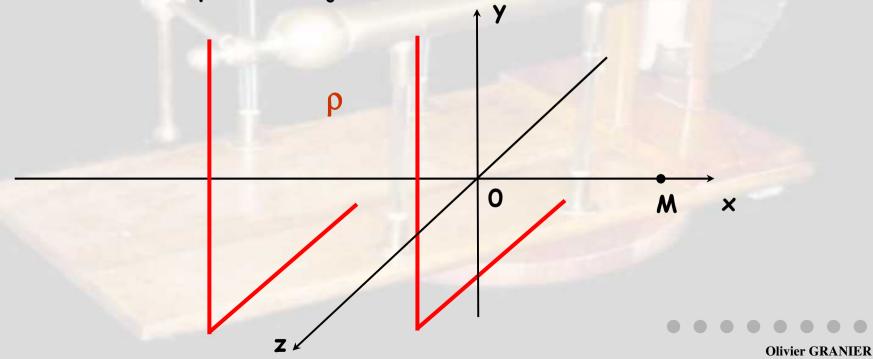
$$\frac{\sigma}{2\varepsilon_0}$$



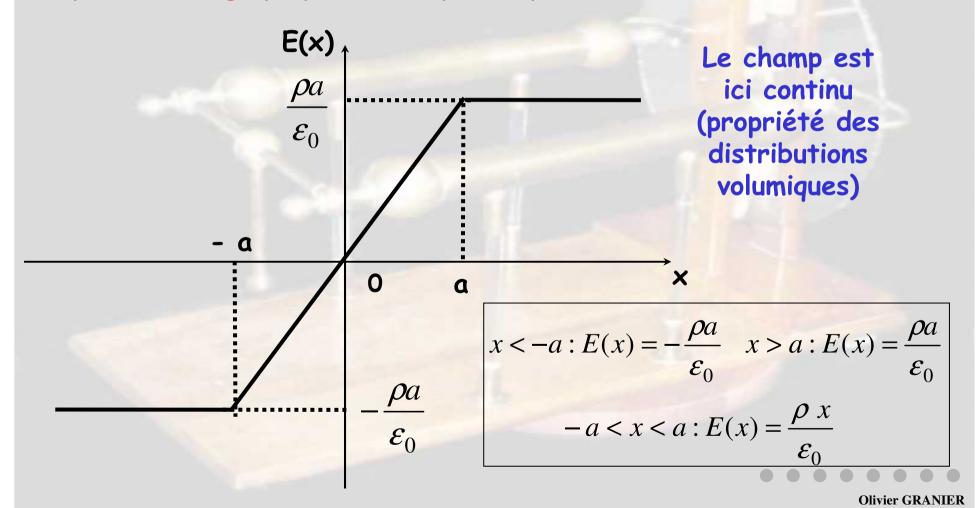
5 - Charges volumiques positives entre deux plans (ex n°8):

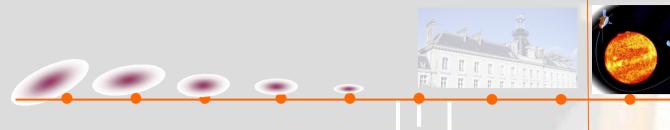
Des charges positives sont contenues entre les deux plans x = +a et x = -a, avec une densité volumique uniforme ρ .

Calculer le champ et le potentiel en tout point de l'espace On admet que le plan x = 0 est au potentiel V_0 .

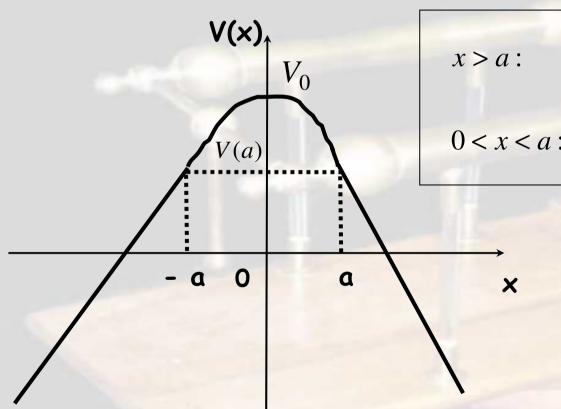


Représentation graphique du champ E(x) (pour $\rho > 0$):





Représentation graphique du potentiel V(x) (pour $\rho > 0$):



$$x > a$$
: $V(x) = \frac{\rho a}{\varepsilon_0} \left(-x + \frac{a}{2} \right) + V_0$

$$0 < x < a : V(x) = -\frac{\rho}{2\varepsilon_0} x^2 + V_0$$

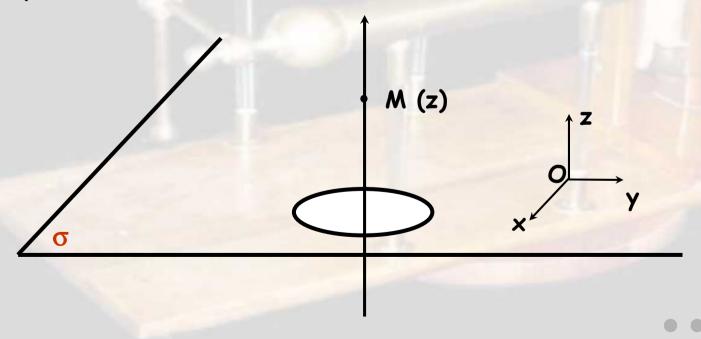
Le potentiel est une fonction paire.

La pente du potentiel est continue en x=+a et x=-a.

6 - Théorème de Gauss et principe de superposition (ex n°12) :

On considère un plan infini percé d'un trou circulaire de rayon R, et chargé uniformément en surface.

A l'aide du principe de superposition, calculer le champ électrostatique en un point M situé sur l'axe du trou.



IV - Théorème de Gauss pour le champ gravitationnel

Analogies formelles :

$$\vec{f}_{élec} = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \vec{u}_r \qquad \qquad \vec{f}_{grav} = -G \frac{mM}{r^2} \vec{u}_r$$

$$\vec{f}_{grav} = -G \frac{mM}{r^2} \vec{u}_r$$

$$\frac{1}{4\pi\varepsilon_0} \Leftrightarrow -G$$

$$q \Leftrightarrow m$$

$$\Phi_S = \oiint_{(\Sigma)} \vec{E}(M) \cdot \vec{n} \ dS = \frac{1}{\varepsilon_0} \sum q_{\text{int}}$$

$$\Phi_S = \oiint_{(\Sigma)} \vec{E}(M).\vec{n} \ dS = \frac{1}{\varepsilon_0} \sum q_{\rm int} \qquad \Phi_S = \oiint_{(\Sigma)} \vec{G}(M).\vec{n} \ dS = -4\pi G \sum m_{\rm int}$$

Exemples (ex n°16):

Utiliser le théorème de Gauss pour calculer le champ gravitationnel créé par une sphère de masse M en tout point de l'espace, dans les deux cas suivants :

*** Sphère creuse (densité surfacique σ = cste).

*** Sphère pleine (masse volumique ρ = cste).

