Réponses et Indications (Nombres Réels)

Exercice 1

1) $S_1 = \left\{-\frac{2}{3}\right\}$. Faire une partition de \mathbb{R} en trois intervalles sur lesquels l'équation s'exprime sans valeur absolue.

2)
$$S_2 =]-\infty,1] \cup \left[\frac{11}{2},+\infty\right[$$
. Se rappeler que : $a \le \sqrt{b} \Leftrightarrow \begin{cases} a \le 0 \\ b \ge 0 \end{cases}$ ou $a^2 \le b$.

Exercice 2

- 1) $X^2 2X 24 = 0$. En divisant (E) par x^2 , on fait apparaître des puissances de X.
- 2) Les racines sont 6 et (-4).

Donc
$$S = \{3 - 2\sqrt{2}, 3 + 2\sqrt{2}, -2 - \sqrt{3}, -2 + \sqrt{3}\}$$
 car $(E) \iff x + \frac{1}{x} = 6$ ou $x + \frac{1}{x} = -4$.

Exercice 3

- 1) Le discriminant est strictement positif car $\Delta = 12^2 + 4 \times 5 \times 7$.
- 2) $y = \frac{12}{7}$ et $z = \frac{214}{25}$. Utiliser la somme $x_1 + x_2 = -\frac{12}{5}$ et le produit $x_1 x_2 = -\frac{7}{5}$.

Exercice 4

1) En isolant x, on est amené à diviser par (m-1).

m < 1	m = 1	<i>m</i> > 1
$S = \left] \frac{2m+1}{m-1}, +\infty \right[$	$S = \mathbb{R}$	$S = \left] - \infty, \frac{2m+1}{m-1} \right[$

2) Séparer les cas suivant le degré de l'équation, puis dans le cas du second degré, étudier le discriminant.

	m = 6	$m < -\frac{21}{4}$	$m = -\frac{21}{4}$	$m > -\frac{21}{4} \text{ et } m \neq 6$
•	$S = \left\{-\frac{2}{3}\right\}$	$S = \emptyset$	$S = \left\{-\frac{1}{3}\right\}$	$S = \left\{ \frac{-(2m+3) - \sqrt{5(4m+21)}}{2(m-6)}, \frac{-(2m+3) + \sqrt{5(4m+21)}}{2(m-6)} \right\}$

Exercice 5

- 1) $S_1 = [n^2, (n+1)^2]$.
- 2) $S_2 = [n^2, n^2 + 1]$.
- 3) $S = \bigcup_{n \in \mathbb{N}} [n^2, n^2 + 1[\text{ car } x \in S \iff \exists n \in \mathbb{N} \quad n = \text{Ent}(\sqrt{x}) = \sqrt{\text{Ent}(x)}.$

Exercice 6

Inf (A) = -1 (plus petit élément) et Sup (A) = 1. Etudier les variations de $x \mapsto \frac{x^2 - 1}{x^2 + 1}$.

Exercice 7

Faire très attention aux conditions d'utilisation des propriétés demandées pour calculer les sommes.

$$S_1 = \frac{3^{n-1}n}{2^n}$$
 $S_2 = 2^p \binom{n}{p}$ $S_3 = \binom{n+1}{p+1}$