Chapitre 11. Formules de Taylor et développements limités

Table des matières

1	Formule de Taylor avec reste intégral	2
2	Inégalité de Taylor-Lagrange	3
3	Formule de Taylor-Young	3
4	Développements limités4.1Définition4.2Développements limités usuels	
5	Opérations sur les développements limités 5.1 Opérations sur les fonctions négligeables au voisinage de 0 5.2 Opérations sur les équivalents 5.3 Somme de deux développements limités 5.4 Produit de deux développements limités 5.5 Composition de deux développements limités	(
6	Application au calcul de limites	7

1 Formule de Taylor avec reste intégral

Soit f une fonction de classe C^{n+1} sur un intervalle I,

et
$$a$$
 et b deux réels de I , alors:
$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(a) + \ldots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \int_a^b \frac{(b-t)^n}{n!}f^{(n+1)}(t) dt$$

Ceci est la formule de Taylor avec reste intégral à l'ordre n, appliquée à f, entre a et b.

Le reste intégral est $R_n = \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$.

La formule peut s'écrire, avec la convention $f^{(0)}(a) = f(a)$.

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

 $d\acute{e}m : \bullet \text{ Pour } n = 0$, la formule s'écrit : $f(b) = f(a) + \int_{-b}^{b} f'(t) dt$, elle est donc vraie car f est une primitive

• Supposons la formule vraie au rang n, et que f est de classe C^{n+2} sur I, c'est-à-dire que la fonction $f^{(n+2)}$ est continue sur un intervalle contenant a et b.

On effectue une intégration par parties sur le reste intégral, en posant :

$$\begin{cases} u(t) = f^{(n+1)}(t) & u'(t) = f^{(n+2)}(t) \\ v'(t) = \frac{(b-t)^n}{n!} & v(t) = -\frac{(b-t)^{n+1}}{(n+1)!} \end{cases}$$

On electue the integration par parties surfle resterintegral, en posant : $\begin{cases} u(t) = f^{(n+1)}(t) & u'(t) = f^{(n+2)}(t) \\ v'(t) = \frac{(b-t)^n}{n!} & v(t) = -\frac{(b-t)^{n+1}}{(n+1)!} \end{cases}$ d'où : $R_n = \left[-f^{(n+1)}(t) \frac{(b-t)^{n+1}}{(n+1)!} \right]_a^b + \int_a^b \frac{(b-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) \, dt = \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(a) + R_{n+1}$ En remplaçant R_n par sa valeur, on obtient la formule à l'ordre n+1.

Remarque: Si f est de classe C^{n+1} sur un intervalle I contenant 0, on peut appliquer la formule de Taylor avec reste intégral entre 0 et x, pour tout x de I. Cela donne :

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \int_0^x \frac{(x-t)^n}{n!}f^{(n+1)}(t) dt$$

$$f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(0) + \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

Application à la démonstration d'inégalités classiques :

Exemple 1: Montrons que: $\forall x \in \mathbb{R}^+, e^x \geq 1 + x + \frac{x^2}{2}$

On écrit la formule de Taylor avec reste intégral à l'ordre 2, entre 0 et x, pour la fonction $f(x) = e^x$. Comme $f'(x) = f''(x) = f'''(x) = e^x$, on a: f(0) = f'(0) = f''(0) = 1, et:

$$e^x = 1 + x + \frac{x^2}{2} + \int_0^x \frac{(x-t)^2}{2} e^t dt$$

Si $x \ge 0$, par positivité de l'intégrale $\int_0^x \frac{(x-t)^2}{2} e^t dt \ge 0$, d'où le résultat. On peut remarquer qu'on aurait l'inégalité inverse pour x < 0.

Exemple 2: Montrons que: $\forall x \in \mathbb{R}^+, \quad \ln(1+x) \leq x$

Si
$$f(x) = \ln(1+x)$$
, alors $f'(x) = \frac{1}{1+x}$ et $f''(x) = -\frac{1}{(1+x)^2}$.

La formule de Taylor à l'ordre 1 pour f entre 0 et x s'éc

$$\ln(1+x) = x - \int_0^x \frac{(x-t)}{(1+t)^2} dt$$

Si $x \ge 0$, pour tout $t \text{ de } [0, x], \ x - t \ge 0$ d'où $\frac{x - t}{(1 + t)^2} \ge 0$, et donc $\int_0^x \frac{(x - t)}{(1 + t)^2} dt \ge 0$. Par conséquent $\ln(1+x) - x \le 0$.

$\mathbf{2}$ Inégalité de Taylor-Lagrange

Rappel:

Théorème 2: Si a < b, alors $\left| \int_a^b f(t) dt \right| \le \int_a^b |f(t)| dt$

Dans ce paragraphe, on cherche à majorer le reste intégral de la formule de Taylor, et de montrer qu'il est négligeable devant tous les termes de la somme qui précède : ainsi la partie principale peut être considérée comme une approximation polynomiale de la fonction.

• Supposons que a < b, et que la fonction f est de classe C^{n+1} sur un intervalle I contenant a et b. Ainsi la fonction $|f^{(n+1)}|$ admet un majorant M sur [a,b]:

$$\forall t \in [a, b], \qquad |f^{(n+1)}| \le M$$

d'où : $\forall t \in [a, b], \qquad \frac{(b-t)^n}{n!} |f^{(n+1)}| \leq M \frac{(b-t)^n}{n!}$, et par positivité de l'intégrale,

$$\int_{a}^{b} \frac{(b-t)^{n}}{n!} |f^{(n+1)}(t)| dt| \le M \int_{a}^{b} \frac{(b-t)^{n}}{n!} dt$$

On obtient donc: $|R_n| \leq M \frac{(b-a)^{n+1}}{(n+1)!}$ c'est-à-dire:

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) \right| \le M \frac{(b-a)^{n+1}}{(n+1)!}$$

On admettra le cas a > b et alors :

Théorème 3:
$$\begin{vmatrix} \text{Si } f \text{ est de classe } C^{n+1} \text{ sur un intervalle contenant } a \text{ et } b, \\ \text{et si } M \text{ est un majorant de } |f^{(n+1)}| \text{ sur } [a,b] \text{ ou } [b,a], \\ |f(b) - \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) | \leq M \frac{|b-a|^{n+1}}{(n+1)!}$$

3 Formule de Taylor-Young

Ecrivons la formule de Taylor avec reste intégral avec $a = x_0$ et b = x:

$$f(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) + \int_{x_0}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

Si M est un majorant de $|f^{(n+1)}|$ sur un intervalle contenant x_0 , pour tout x de cet intervalle on a :

$$|R_n| \le M \frac{|x - x_0|^{n+1}}{(n+1)!}$$

Posons :
$$\epsilon(x) = \frac{R_n}{(x-x_0)^n}$$
, alors $|\epsilon(x)| \le \frac{M|x-x_0|}{(n+1)!}$, et donc $\lim_{x \to x_0} \epsilon(x) = 0$.

Soit
$$f$$
 de classe C^{n+1} sur un intervalle I , x_0 un réel de I . Alors il existe une fonction ϵ telle que $\lim_{x \to x_0} \epsilon(x) = 0$ et :
$$f(x) = \sum_{k=0}^n \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) + (x-x_0)^n \epsilon(x)$$

Remarques:

- 1. Ce théorème est en fait valable dès que f est de classe C^n sur l'intervalle en question : on l'a démontré pour f de classe C^{n+1} , et de fait on l'appliquera à des fonctions de classe C^{∞} !
- 2. Dire que $\lim_{x\to x_0} \epsilon(x) = 0$ signifie que le terme complémentaire $(x-x_0)^n \epsilon(x)$ est négligeable devant $(x-x_0)^n$ quand x tend vers x_0 .

On peut donc écrire la formule de Taylor-Young sous la forme :

$$f(x) = \sum_{k=0}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) + o((x - x_0)^n)$$

3. Pour n = 1, la formule s'écrit : $f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\epsilon(x)$. On reconnait le développement limité d'ordre 1 de f au voisinage de x_0 .

4 Développements limités

4.1 Définition

Définition 1: On dit que f admet un développement limité à l'ordre n au voisinage de x_0 si, et seulement si, il existe un intervalle ouvert I contenant x_0 et une fonction ϵ et un polynôme P_n de degré inférieur ou égal à n tels que :

$$\lim_{x \to x_0} \epsilon(x) = 0 \qquad et \qquad \forall x \in I \qquad f(x) = P_n(x - x_0) + (x - x_0)^n \epsilon(x)$$

Exemple: Soit $f(x) = \frac{1}{1-x}$.

On sait que, si
$$x \neq 1$$
, on a: $1 + x + x^2 + \ldots + x^n = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x^{n+1}}{1 - x}$

donc si l'on pose : $\epsilon(x) = \frac{x}{1-x}$, on a : $\lim_{x \to 0} \epsilon(x) = 0$

et:
$$f(x) = 1 + x + x^2 + ... + x^n + x^n \epsilon(x)$$

donc la fonction f admet un développement limité d'ordre n au voisinage de 0, et ceci pour tout entier naturel n, avec $P_n(x) = 1 + x + x^2 + \ldots + x^n$.

Théorème 5 : Toute fonction de classe C^n sur un intervalle I contenant x_0 admet un développement limité donné par la formule de Taylor-Young.

En effet, la partie principale de cette formule est un polynôme de degré n en $x-x_0$.

Remarque 1: Au voisinage de x_0 , $(x-x_0)^n \epsilon(x) = o((x-x_0)^n)$. On utilisera de préférence cette deuxième écriture pour écrire les développements limités.

Remarque 2 : Soit x_0 un réel quelconque, et $h = x - x_0$. Avec un changement de variable on peut alors écrire :

$$f(x) = f(x_0 + h) = P_n(h) + o(h^n)$$

Pour trouver un développement limité au voisinage d'un réel quelconque x_0 , on peut donc toujours se ramener à un DL au voisinage de 0. Dans la pratique, on utilisera les développements limités usuels au voisinage de 0, et certaines opérations sur ces DL.

4.2Développements limités usuels

Pour calculer ces DL, il suffit de calculer les dérivées successives des fonctions étudiées, et leurs valeurs en 0.

$$e^x = 1 + x + \frac{x^2}{2} + \ldots + \frac{x^n}{n!} + o(x^n) = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n)$$

$$\frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n) = \sum_{k=0}^n (-1)^k x^k + o(x^n)$$

En remplaçant x par -x dans cette formule, on retrouve le DL de $f(x) = \frac{1}{1-x}$ au voisinage de 0, établi au paragraphe précédent par une autre méthode.

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^{3} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

Par exemple: Si $f(x) = \frac{1}{\sqrt{1+x}}$, on peut appliquer cette formule avec $\alpha = -\frac{1}{2}$

Le DL à l'ordre 3 de cette fonction au voisinage de 0 est donc :
$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \circ(x^3)$$

5 Opérations sur les développements limités

Opérations sur les fonctions négligeables au voisinage de 0

Définition 2: f est négligeable devant g au voisinage de 0 si, et seulement si, $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$

Notation: $f(x) = \circ(g(x))$

Remarque: Quand il n'y a pas d'ambiguité, et que tout se passe au voisinage de 0, on écrit simplement: $f(x) = \circ(g(x)).$

Propriétés:

1.
$$f(x) = o(1)$$
 \Leftrightarrow $\lim_{x \to 0} f(x) = 0$

- 2. Transitivité : Si f(x) = o(g(x)), et g(x) = o(h(x)), alors f(x) = o(h(x))
- 3. Linéarité : si $f_1(x) = o(g(x))$ et $f_2(x) = o(g(x))$, alors pour tous réels λ et μ , $\lambda f_1(x) + \mu f_2(x) = o(g(x))$ En particulier, la somme de deux fonctions négligeables devant x^n est négligeable devant x^n . Ceci se traduit dans les calculs par : $\circ(x^n) + \circ(x^n) = \circ(x^n)$
- 4. Si n > p, $x^n = \circ(x^p)$ Combiné avec la propriété précédente cela donne : si n > p, $\circ(x^n) + \circ(x^p) = \circ(x^p)$ par exemple: $\circ(x^3) + \circ(x^2) = \circ(x^2)$
- 5. Inverse: $f(x) = o(g(x)) \Leftrightarrow \frac{1}{g(x)} = o\left(\frac{1}{f(x)}\right)$ Exemple: $\frac{1}{x^2} = \circ \left(\frac{1}{x^3}\right)$

6. **Produit :** si f(x) = o(g(x)), et si h est une fonction non nulle au voisinage de 0, alors : h(x)f(x) = $\circ (h(x)g(x))$

Exemple:
$$x^2 \circ (x^3) = \circ(x^5)$$

et plus généralement : $x^k \circ (x^n) = \circ (x^{n+k})$

Autre exemple:
$$\frac{\circ(x^n)}{x^n} = \circ(1)$$

5.2Opérations sur les équivalents

Définition 3:
$$f(x) \underset{0}{\sim} g(x) \Leftrightarrow \lim_{x \to 0} \frac{f(x)}{g(x)} = 1$$

Quand il n'y a pas d'ambiguité, que tout se passe au voisinage de 0, on écrit simplement : $f(x) \sim g(x)$ Exemple: $\ln(1+x) \sim x$

Propriétés:

1. $f(x) \sim g(x) \Rightarrow \lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$ La réciproque n'est vraie que lorsque la limite commune de f et g est finie et non nulle.

2. Si f(x) = g(x) + o(g(x)), alors $f(x) \sim g(x)$

$$d\acute{e}m: \frac{f(x)}{g(x)} = 1 + \frac{\circ(g(x))}{g(x)} = 1 + \circ(1), \text{ d'où } \lim_{x \to 0} \frac{f(x)}{g(x)} = 1$$

 $d\acute{e}m: \frac{f(x)}{g(x)} = 1 + \frac{\circ(g(x))}{g(x)} = 1 + \circ(1), \ d'où \lim_{x \to 0} \frac{f(x)}{g(x)} = 1$ **Application:** Si f admet une développement limité à l'ordre n au voisinage de 0, f(x) est équivalent au premier terme non nul de ce DL, les autres termes étant négligeables devant le premier.

Exemples:
$$\ln(1+u) = u - \frac{u^2}{2} + o(u^2)$$
, d'où $\ln(1+u) \sim u$.

3. Si
$$f_1(x) \sim g_1(x)$$
 et $f_2(x) \sim g_2(x)$, alors $f_1(x)f_2(x) \sim g_1(x)g_2(x)$
 $Exemple: (e^x-1)\ln(1+x) \sim x^2$

5.3 Somme de deux développements limités

Exemple: Ecrire un DL à l'ordre 3 de : $e^x + \sqrt{1+x}$

Pour cela on écrit des DL des deux termes de cette somme, à l'ordre 3. On a :
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \circ(x^3)$$
 et $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \circ(x^3)$

On additionne les parties principales membre à membre, et la somme de deux fonctions négligeables devant x^3 est une fonction négligeable devant x^3 . On obtient

$$e^x + \sqrt{1+x} = 2 + \frac{3}{2}x + \frac{3}{8}x^2 + \frac{11}{48}x^3 + o(x^3)$$

Remarque : Si on additionne deux DL d'ordres différents, on obtient un DL de l'ordre le plus petit.

$$\begin{cases} f(x) = a + bx + cx^2 + o(x^2) \\ g(x) = a' + b'x + c'x^2 + d'x^3 + o(x^3) \end{cases}$$

Alors comme $d'x^3 + o(x^3) = o(x^2)$, on a: $f(x) + g(x) = (a + a') + (b + b')x + (c + c')x^2 + o(x^2)$

5.4Produit de deux développements limités

Exemple: Ecrire un DL à l'ordre 2 de $e^x \ln(1+x)$

Ecrivons les DL respectifs des deux facteurs du produit, à l'ordre 2 :

$$e^x = 1 + x + \frac{x^2}{2} + o(x^2)$$
 et $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$

$$e^{x} \ln(1+x) = (1+x+\frac{x^{2}}{2}+\circ(x^{2}))(x-\frac{x^{2}}{2}+\circ(x^{2}))$$

$$= x-\frac{x^{2}}{2}+\circ(x^{2})+x^{2}-\frac{x^{3}}{2}+x\circ(x^{2})+\frac{x^{3}}{2}+\frac{x^{4}}{4}+\frac{x^{2}}{2}\circ(x^{2})$$

$$= x+\frac{x^{2}}{2}+\circ(x^{2})$$

En effet, à part les termes en x et en x^2 , tous les termes sont négligeables devant x^2 , donc leur somme l'est aussi.

Composition de deux développements limités

Exemple 1: Ecrire un développement limité à l'ordre 4 au voisinage de 0 de : $g(x) = \frac{1}{1+3x^2}$ Dans ce cas, on effectue simplement un changement de variable, en posant $u = 3x^2$: en effet $\lim_{x\to 0} 3x^2 = 0$.

Comme $\frac{1}{1+u} = 1 - u + u^2 + o(u^2)$, on a:

$$\frac{1}{1+3x^2} = 1 - 3x^2 + 9x^4 + o(x^4)$$

On remarque qu'il suffit de prendre un DL d'ordre 2 de $\frac{1}{1+u}$ pour obtenir un DL d'ordre 4 de g au voisinage

Exemple 2: Ecrire un développement limité à l'ordre 2 au voisinage de 0 de $f(x) = \frac{1}{\sqrt{1 + \ln(1 + x)}}$. Posons $u = \ln(1+x)$, alors comme $\lim_{x \to 0} u = 0$, donc on peut effectuer le changement de variable, mais pour avoir

une partie principale qui soit un polynôme, il faut utiliser l'expression de u sous forme de développement limité :

$$u = x - \frac{x^2}{2} + \circ(x^2) \qquad \text{et} \qquad \frac{1}{\sqrt{1+u}} = (1+u)^{-\frac{1}{2}} = 1 - \frac{1}{2}u + \frac{3}{8}u^2 + \circ(u^2)$$

$$\text{donc} \qquad f(x) = 1 - \frac{1}{2}(x - \frac{x^2}{2} + \circ(x^2)) + \frac{3}{8}(x^2 + \circ(x^2)) + \circ(x^2) \qquad \text{, car } x^2 \sim u^2 \qquad \text{d'où}:$$

$$f(x) = 1 - \frac{1}{2}x + \frac{5}{8}x^2 + \circ(x^2)$$

6 Application au calcul de limites

Exemple 1: Calculer la limite en 0 de la fonction $f: f(x) = \frac{e^x - 1 - x}{r^2}$

On sait que, dans un voisinage de 0, $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$

donc

$$f(x) = \frac{\frac{x^2}{2} + \circ(x^2)}{x^2} = \frac{1}{2} + \circ(1)$$
 d'où:

$$\lim_{x \to 0} f(x) = \frac{1}{2}$$

 $f(x) = \sqrt{x^2 + 3} - \sqrt{x^2 - 1}$ **Exemple 2 :** Calculer la limite en $+\infty$ de

On a:
$$f(x) = x \left(\sqrt{1 + \frac{3}{x^2}} - \sqrt{1 - \frac{1}{x^2}} \right)$$

Or: $\sqrt{1+t} = 1 + \frac{1}{2}t + \circ(t)$ lorsque t tend vers 0, et d'autre part : $\lim_{x \to +\infty} \frac{3}{x^2} = 0$ et $\lim_{x \to +\infty} -\frac{1}{x^2} = 0$ On peut donc effectuer les deux changements de variable :

$$\sqrt{1 + \frac{3}{x^2}} - \sqrt{1 - \frac{1}{x^2}} = 1 + \frac{3}{2x^2} + o\left(\frac{3}{x^2}\right) - \left(1 - \frac{1}{2x^2} + o\left(-\frac{1}{x^2}\right)\right) = \frac{2}{x^2} + o\left(\frac{1}{x^2}\right)$$
d'où $f(x) = \frac{2}{x} + o\left(\frac{1}{x}\right)$ et $\lim_{x \to +\infty} f(x) = 0$.

Un tel développement de la fonction, quand la variable tend vers l'infini, est appelé développement asympto tique.

Exemple 3: Soit
$$\begin{cases} f(x) = \frac{x - \ln(1+x)}{x} & \text{si } x \neq 0 \\ f(0) = 0 \end{cases}$$

Etudier la continuité et la dérivabilité de f en 0 ainsi que la position de la courbe de f par rapport à la tangente au point d'abscisse 0.

On établit un développement limité à l'ordre 2 de f au voisinage de 0, à l'aide du développement limité de $\ln(1+x)$ à l'ordre 3 au voisinage de 0 :

de
$$\ln(1+x)$$
 à l'ordre 3 au voisinage de 0 :
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \circ(x^3) \qquad \text{d'où}: \qquad f(x) = \frac{x}{2} - \frac{x^2}{3} + \circ(x^2)$$

- 1. $\lim_{x\to 0} f(x) = 0 = f(0)$ donc f est bien continue en 0.
- 2. $\frac{f(x) f(0)}{x 0} = \frac{f(x)}{x} = \frac{1}{2} \frac{x}{3} + \circ(x)$ d'où : $\lim_{x \to 0} \frac{f(x) f(0)}{x 0} = \frac{1}{2}$ f est donc dérivable en 0, et $f'(0) = \frac{1}{2}$
- 3. L'équation de la tangente à la courbe de f au point d'abscisse 0 est : $y = \frac{x}{2}$ et on a :

$$f(x) - \frac{x}{2} = -\frac{x^2}{3} + \circ(x^2)$$

donc au voisinage de 0, $f(x) - \frac{x}{2} < 0$: La courbe est *en-dessous* de sa tangente au point (0,0).