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Figures in this toolbox were generated from co-ordinates
deposited in the Protein Data Bank (1). This article is a
composite of work from many laboratories referred within.

Clathrin heavy chain proximal leg (1210-1516) and N-ter-

minal domain and linker (1-494). Clathrin is a trimer of 192
kDa heavy chains, each with an associated regulatory light
chain. Adaptor complexes recruit clathrin to the membrane at
the cell surface or trans-Golgi network where it self-assem-
bles into a lattice coat (2). The proximal leg mediates lattice
assembly, which is regulated by binding of acidic light chain
and phosphorylation of Y1477 (red) (3). The proximal leg (4)
(upper*,115×28×24 A, ) is an elongated rod made up of an
extended a/a superhelix, comprised of tandemly repeated
146-residue motifs (CHCRs). Alignments indicate that the
structure of clathrin legs is generated by seven CHCRs, each
of which contains a stack of 5 helix hairpin pairs. A conserved
basic groove (blue) may be the binding site for clathrin light
chains. The globular N-terminal domain projects vesicles to-
ward the vesicle membrane (5) to interact with the b-hinge
domain of the adaptor complex (6) and other accessory
proteins. This domain (7) (lower, 47×40×75 A, ) is a seven-
bladed b-propeller structure with an a-helical flexible linker
domain (gray). Each blade of the propeller is a slightly twisted
antiparallel b-sheet. b-arrestin and b3 adaptin binds in a
groove between two blades of the propeller (red) (8,51).

This review includes 16 structures of vesicle coat compo-

nents and accessory proteins and a description of their

roles in vesicle budding or coat disassembly.
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1 For all figures: Black bar indicates portion of protein included
in molecular structure solution. Abbreviations: CC, coiled coil
domain, CCP, clathrin coated pit, CHCR, clathrin heavy chain
repeat, EGF, epidermal growth factor, GAP, GTPase activating
protein, GEF, guanine nucleotide exchange factor, PPII helix,
polyproline II helix

* The extended leg, shown below the proximal leg crystal
structure, is a projected model based on repeated CHCR
motifs.
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AP2 adaptor a subunit C-terminal appendage domain

(701-938). The AP2 adaptor complex (�300 kDa) selects
molecules for sorting into clathrin-coated vesicles (CCVs) and
recruits clathrin to the plasma membrane (16). The �100
kDa a subunit’s appendage (47×53×59 A, ) is a tightly-
packed two-lobed structure (17,18). One domain (blue) is a
two-sheet b-sandwich of antiparallel strands, resembling the
immunoglobulin (IG) superfamily. The second ‘platform’ do-
main, similar to the yeast TATA-box, is an antiparallel b-sheet
‘platform’ with two buttressing helices below it (yellow, red),
and a helix crossing over top. A conserved hydrophobic patch
on the platform face centered at W840 (violet) is required for
binding to accessory proteins Eps15, epsin, amphiphysin,
auxilin, or AP180.

AP2 adaptor m2 subunit internalization signal binding

domain (122-435). The m2 subunit of AP2 (�50 kDa) adap-
tor binds the endocytic sequence motif of cargo proteins,
coupling them to the clathrin coat (16). The elongated, ba-
nana-shaped endocytic binding motif (80×25×20 A, ) has
two b-sandwich subdomains (19) (left and right). Signal pep-
tides of trans-Golgi network protein TGN38 (DYQRLN) and
EGF receptor (FYRALM, shown) both bind in an identical
manner as extended b-strands. Hydrophobic cavities binding
the Tyr and f residues (blue) are positioned on either side of
an edge b strand (pink). m2 dimerization may contribute to
selective recognition of adjacent signal peptides in dimeric
receptors.

Visual arrestin (8-402). Arrestins (�45 kDa) bind to G-
protein coupled receptors (GPCRs) and block G protein bind-
ing to terminate signaling (20). Non-visual arrestins,
presumably similar in structure, bind clathrin N-terminal do-
main and can function as adaptors for the internalization of
b2-adrenergic receptor (21). Arrestin (95×45×60 A, ) is com-
posed of seven-stranded b-sandwich N (blue) and C (yellow)
domains, and a C tail (orange) that packs up against their
interface (22,23). Arrestin’s proximity to its phosphorylated
receptor may disrupt electrostatic interactions to induce con-
formation changes that favor GPCR binding. The non-visual
arrestins have an LIEFE insertion in an exposed loop (green,
dashed) for clathrin binding (21). b-Arrestin localization is
regulated by phosphorylation (24) and a phosphoinositide
binding site (violet) (25).

HIV-1 protein negative factor (Nef) anchor domain (1-57)

and core (57-203). Nef (27 kDa) is crucial for disease pro-
gression (26,27). Nef binds to m-adaptin and vacuolar ATPase
NBP1, and accelerates CD4 internalization by localizing CD4
to CCPs. Nef may then bind to endosomal b-COP, leading to
CD4 degradation (28). (Left, 60×45×60 A, ) The myristoy-
lated N-terminus anchors Nef to the membrane (29). Kinase
interaction is mediated through an a-helix (left, green) and a
PPII helix RPQVPLR (right, orange) in the loosely-packed a/b
core (50×50×30 A, ) (30–32). A protruding loop (right, red)
containing a dileucine motif binds m-adaptin. Residues 57-58
(indicated ***, left and right) in turn bind to the CD4
dileucine motif.
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ADP-ribosylation factor 1 (ARF1) (1-179). ARF1 is a mem-
brane-associating 21-kDa GTPase that controls coating and
uncoating of COP1 formed in the secretory pathway or on
endosomes and clathrin-coated vesicles of cells (33). Coat
assembly is initiated when ARF1 binds GTP and recruits coat
proteins. After vesicles pinch off, the coat disassembles as
ARF hydrolyzes GTP and releases from the membrane. ARF1
is dissociated from the membranes by treatment of cells
with Brefeldin A. The myristoylated N-terminus (1–17, not
shown) anchors ARF to the membrane (34). (Upper left,
30×35×25 A, ) ARF1 GTPase core (34,35) shares the struc-
tural fold of Ras, an eight stranded b-sheet surrounded by
five helices. Strands b2 and b3 (green) and adjacent sw2
(switch2) loop (red) move about 7A, between ARF structures
with bound GDP (shown) or bound GTP-analog, suggesting
how nucleotide exchange regulates exposure of the myris-
toylated N-terminus.

ARF GTPase activating protein 1 (ARFGAP1) (1-136). ARF-
GAP1 (45 kDa) binding to ARF is required to accelerate GTP
hydrolysis (33). (Upper right, 35×35×25 A, ) ARFGAP1 (35)
features a GATA-like Cys4 zinc finger (CX2CX16CX2, yellow in
vicinity of zinc) nested against six helices and a b strand.
Binding between ARF1 and ARFGAP1 involves the structural
components highlighted in red. The role of a conserved Arg
(violet) remains unsettled, but it appears essential for GT-
Pase activity. However, in the crystallized complex (as
shown), this residue is too distant from the GTP site to serve
as catalytic Arg finger.

PYK2 tyrosine kinase activating protein b-subunit

(PAPb): ARF-GAP domain and ankyrin repeats (112-522).

PAPb (88 kDa) activates ARF1 GTP hydrolysis and contains
C-terminal ankyrin repeats common in other proteins with
ARF-GAP activity (36). ARF-GAP domains of PAPb (37) (cen-
ter, 42×28×26 A, ) and ARFGAP1 (upper right) are similar,
although divergent in C-terminal portions buttressing the
back of the zinc finger module. Comparison of structures
suggest that either the ankyrin repeats (alternating blue and
red helices, 40×15×20 A, ) are dislodged from the ARF-GAP
domain before binding ARF1 or that the PAPb ARF-GAP
binds ARF1 differently from the previous structure.

ARF nucleotide-binding-site opener (ARNO): Sec7 ARF-

GEF domain (50-252). The Sec7 domain of the 47-kDa
protein, ARNO, catalyzes nucleotide exchange in the G-
protein ARF1 (38). After GDP to GTP exchange, ARF1 ini-
tiates the coating of vesicles formed in the endoplasmic
reticulum, Golgi apparatus, TGN and endosomes. The crystal
structure (2 A, ) of ARNO-Sec7 (39), resembling a flared cylin-
der, is a series of a-helices folded in a distorted right-handed
superhelix (70×40×40 A, ). Two highly conserved regions,
Motif1-loop and Motif2-helix (red), define opposite walls of a
groove into which both Brefeldin A and the switch 2 region
of ARF1 fit (34,39). Substitutions in either motif block ARNO-
Sec7 nucleotide exchange activity.
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Amphiphysin 2: Src-homology 3 (SH3) domain (494-588).

Amphiphysin isoforms 1 and 2 (49% sequence identity, �95
kDa) form a heterodimer that binds to the C-terminal ap-
pendage domain of the AP2 adaptor a-chain in CCVs (40).
Both isoforms have SH3 domains which recognize the
PSRPNR sequence within dynamin’s proline rich domain
(PRD). Amph1 and Amph2 also bind clathrin, synaptojanin,
and endophilin. Isolated Amph SH3 domains disrupt endocy-
tosis by preventing multimerization of dynamin. The Amph2
SH3 domain (41) (35×25×30 A, ) comprises a five-stranded
b-barrel with a hydrophobic binding face formed by the RT
(blue) and n-Src (green) loops for interacting with Pro-rich
ligand sequences. The unique n-Src loop in Amph 2 intro-
duces acidic residues, specific for the two R residues in its
dynamin binding site (red) and its extended size explains the
steric interference with dynamin multimerization. Thus, am-
phiphysin recruits dynamin to CCVs, but negatively regulates
dynamin assembly until the two proteins dissociate.

Dynamin 1: pleckstrin homology (PH) domain (518-630).

Dynamin, a GTPase of �100 kDa that is essential for endo-
cytosis, is recruited to a CCV during scission from the plasma
membrane. Dynamin self-assembles into a collar at the vesi-
cle-membrane attachment site, a process that regulates its
GTPase activity and controls membrane scission (42,43). The
dynamin 1 PH domain (44,45) is a b-sandwich (40×40×35
A, ) of two orthogonally-oriented b-sheets (yellow and green),
flanked on one side by an a-helix (blue). On the other side of
the sandwich, protruding loops form a positively charged
surface for binding to proteins or to phosphoinositide (violet)
(46). PH-mediated phosphoinositide binding is not essential
for dynamin membrane localization, but may be important for
function (47).

EGF receptor substrate 15

(Eps15): EH1 (7-115) and EH2 (115-218) domains. Eps15
(�100 kDa) binds the C-terminal appendage domain of the
AP2 adaptor a-subunit in CCVs (48). Eps15 function is essen-
tial to endocytosis, mediating the interaction of AP2 with
proteins containing NPF or W/FW sequences through its
three EH domains. Binding proteins include epsin, CALM/
AP180 and synaptojanin, all implicated in regulation of recep-
tor-mediated endocytosis. Eps15 forms oligomers through a
coiled-coil domain in the center of the molecule, suggesting
a structural or cytoskeletal role. The EH1 (49) (upper, 25×
35×30 A, ) and EH2 (50) (lower, 25×35×30 A, ) domains of
eps15 each comprise two helix-loop-helix EF hand motifs
(green and yellow), which are connected by a short anti-paral-
lel b-sheet in EH1. Ca2+ binding (red sphere) in EH2 likely
has a structural role. The NPF-binding site of each is formed
by hydrophobic residues along helical faces contributed by
both EF hands (violet).
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Heat-shock cognate 70 kDa protein (Hsc70 ) ATPase

(1-384) and substrate binding domain (SBD) (383-540).

The molecular chaperone Hsc70 (9) is the uncoating ATPase
for the disassembly of clathrin lattices and also contributes to
adaptor uncoating (10). The portion of the protein repre-
sented by these two structures together is sufficient for
uncoating activity (11). The DnaJ homologue auxilin binds to
the proximal leg of assembled clathrin and to ATP-bound
Hsc70 (12) to mediate clathrin uncoating. (Left, 50×50×20
A, ) The Hsc70 ATPase domain (13) is a member of the
hexokinase/actin superfamily of structures (14). ATP binds in
a deep cleft (red) between two subdomains (yellow, cyan).
The connection point between the ATPase and SBD domains
is indicated (**). (Right, 55×30×20 A, ) SBD (15) contains a
b-sandwich domain (purple) with a helix latched on top (or-
ange), where L539 (green) blocks the substrate binding
groove. Nucleotide-dependent movement of this helical latch
may make the groove accessible (16).
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