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Duman, Joseph G., and John G. Forte. What is the role of SNARE
proteins in membrane fusion? Am J Physiol Cell Physiol 285: C237–C249,
2003; 10.1152/ajpcell.00091.2003.—Soluble N-ethylmaleimide-sensitive
factor activating protein receptor (SNARE) proteins have been at the fore-
front of research on biological membrane fusion for some time. The subcel-
lular localization of SNAREs and their ability to form the so-called SNARE
complex may be integral to determining the specificity of intracellular
fusion (the SNARE hypothesis) and/or serving as the minimal fusion ma-
chinery. Both the SNARE hypothesis and the idea of the minimal fusion
machinery have been challenged by a number of experimental observations
in various model systems, suggesting that SNAREs may have other func-
tions. Considering recent advances in the SNARE literature, it appears that
SNAREs may actually function as part of a complex fusion “machine.” Their
role in the machinery could be any one or a combination of roles, including
establishing tight membrane contact, formation of a scaffolding on which to
build the machine, binding of lipid surfaces, and many others. It is also
possible that complexations other than the classic SNARE complex partic-
ipate in membrane fusion.

soluble N-ethylmaleimide-sensitive factor activating protein receptor

AMONG THE MOST IMPORTANT and widely studied proteins
in membrane trafficking, docking, and fusion are the
soluble N-ethylmaleimide-sensitive factor activating
protein receptors, or SNAREs. SNARE proteins are
membrane-associated proteins that contain character-
istic SNARE domains: heptad repeats �60 amino acids
in length that are predicted to form coiled-coils. Since
their discovery, it has become evident that they facili-
tate membrane fusion in numerous eukaryotic sys-
tems, and an extensive literature concerning their role
in this process has developed (28, 40, 54). Two espe-
cially salient features of SNARE proteins recommend
them as fundamental fusion factors. The first is their
subcellular localization: distinct SNAREs are localized
to distinct membrane compartments and domains in
all eukaryotic cells. This feature led to the proposal of
the SNARE hypothesis, which proposed that SNAREs
dictate the specificity of membrane fusion events (116).
The review by Jahn and Sudhof (54) contains an ex-
tensive list of SNARE proteins and their intracellular
localizations. The second feature is the ability of a
given set of SNAREs in two adjacent membranes to
form extremely stable, even SDS-resistant, complexes
through interactions among their SNARE domains
that bring the membranes into close apposition. As we
see, this property has been invoked to link SNAREs to
the energetics of fusion. The pressing and unanswered
question is: how? How do the distinctive and compel-
ling properties of SNAREs relate to the process of

membrane fusion? This question relates directly to
another pressing question, namely, what is the mech-
anism of intracellular membrane fusion itself? By un-
derstanding the role of SNAREs, we can take an enor-
mous step forward in our attack of this question. In
this review, we briefly examine the basis for the most
prevalent modes of thought regarding SNARE function
in membrane fusion. We highlight some experimental
evidence that challenges these modes and move on to a
discussion of some alternate roles for SNAREs and
emerging ideas regarding them.

LESSONS FROM NEURONAL SNARES

The two features enumerated in the Introduction,
subcellular localization and complex formation, are
perhaps most clearly illustrated in the widely studied
neuronal SNARE proteins. The presynaptic membrane
of a neural axon is the site of rapid exocytic events
upon cell stimulation by an action potential. In re-
sponse to Ca2� influx, synaptic vesicles containing neu-
rotransmitter fuse with the presynaptic membrane
and release their contents into the synaptic cleft,
where they diffuse to the postsynaptic cell (71). Three
SNARE proteins are involved in this process: vesicle-
associated membrane protein (VAMP)-2, a single-pass
transmembrane protein located primarily in the ve-
sicular membrane; synaptosome-associated protein
(SNAP)-25, which contains two SNARE domains flank-
ing a region of palmitolyated cysteines by which it
associates with the plasma membrane; and syntaxin
1A, a single-pass transmembrane protein that resides
primarily in the plasma membrane (71). All SNARE
domains have a cytoplasmic orientation. At some time
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during the exocytic process, the SNAREs assemble into
an SDS-resistant trans (i.e., membrane spanning) com-
plex with a 1:1:1 stoichiometry. This complex is appar-
ently required for fusion, because preventing complex
formation by cleaving SNAREs with clostridial neuro-
toxins (47) completely inhibits neurotransmitter exo-
cytosis (53), though it does not inhibit targeting of
synaptic vesicles to the presynaptic membrane (52).
After fusion, the SNARE complex recruits �-SNAP and
N-ethylmaleimide-sensitive factor (NSF) (115, 116),
which disassemble the now cis (i.e., resident in one
membrane) complex and allow individual SNAREs to
be recycled.

The structure of the core part of neuronal SNARE
complex, consisting of the SNARE domains assembled
into an SDS-resistant complex (in the absence of trans-
membrane or other domains), has been solved by both
spin labeling electron paramagnetic resonance and X-
ray crystallography. In both cases, this revealed a long
(�12 nm), twisted, parallel four-helix bundle composed
of SNARE domains oriented with their COOH termini
toward the membrane (30, 99, 119). SNAP-25 contrib-
utes two helices to the bundle, and VAMP-2 and syn-
taxin 1A contribute one apiece. The surface of the
bundle has four prominent grooves and is highly polar,
with some very localized patches of charge (30, 119);
these features provide putative binding sites for asso-
ciated proteins. The coiled bundle is 16 layers deep,
and a layer near the middle, called the ionic central
layer, contains three glutamines and one arginine, the
arginine being donated by VAMP-2 and every other

SNARE motif contributing one glutamine. The ionic
central layer is also commonly referred to as the “zero
layer.” The structure of the core complex and the ge-
ometry of the ionic central layer are shown in Fig. 1.

The neuronal SNAREs represent only one of many
SNARE complexes that exist. How much do other
SNARE complexes resemble this archetype? Sequence
alignment of many SNAREs reveals that the ionic
nature of the central layer may be a critical feature of
complex development. Glutamine residues are highly
conserved in ionic central layer positions in relatives of
SNAP-25 and syntaxin 1A, and arginine residues are
likewise conserved in these positions in VAMP rela-
tives (33). The exocytic SNARE complex in yeast has
been examined by deep-etch electron microscopy. The
results of this investigation indicated that the yeast
complex members Snc2p, Sec9p, and Ssop, correspond-
ing to VAMP-2, SNAP-25, and syntaxin 1A, respec-
tively, form a very similar parallel bundle complex at
the yeast plasma membrane (59), albeit at lower reso-
lution than X-ray crystallography. Another mamma-
lian SNARE complex, the late endosomal complex, also
provides some insight into the generality question. The
SNARE complex in late endosomes has a low overall
sequence homology to the neuronal SNARE complex
and consists of four proteins: syntaxin 7, syntaxin 8,
Vti1b, and VAMP-8. Biochemical studies of this com-
plex, however, reveal a marked similarity to the neu-
ronal complex: both complexes contain one copy of each
participating protein, both complexes are resistant to
dissolution by SDS, the constituents of both complexes

Fig. 1. Topology and organization of the SNARE fusion
complex reconstructed from crystallographic data. A:
backbone ribbon drawing of the synaptic fusion com-
plex: VAMP-2, also known as synaptobrevin-II (Sb;
blue); syntaxin-1A (Sx; red); SNAP-25B (Sn1 and Sn2;
green). The synaptic fusion complex is arranged as a
cylinder 120 Å in length with a circular cross section
(see Fig. 2). All 4 components of the heterotrimer are
arranged in parallel, with the NH2 termini (N) at one
end of the bundle and the COOH termini (C) at the
membrane-anchor end. B: organization of the SNARE
fusion complex with regions of interaction shown as
layers drawn perpendicular to the superhelical bundle
axis. Layers are numbered and indicated by virtual
bonds between corresponding C� positions: C� traces
(gray); local helical axes (blue, red, and green for syn-
aptobrevin-II, syntaxin-1A, and SNAP-25B, respective-
ly); the superhelical axis (black); and layers (0, red; �1,
�1, and �2, blue; all others black). C: expanded view of
ionic central layer (0 layer) of the SNARE fusion com-
plex. Side chains involved in the layer are shown as
balls and sticks; backbone is shown as a ribbon. The
total buried surface area for the side chain atoms in this
layer is 742 Å. Reprinted from Sutton et al. (119) with
permission.
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are largely disordered before complex formation but
assume an �-helical structure upon complex formation,
and both complexes can be disassembled by the
ATPase NSF in the presence of �-SNAP (5). Moreover,
the authors of this study found that proteins could be
switched between the two complexes without signifi-
cantly changing properties of the complex, as long as
syntaxin 7 was substituted for syntaxin 1A, Vti1b for
the NH2-terminal SNARE domain of SNAP-25, syn-
taxin 8 for the COOH-terminal SNARE domain of
SNAP-25, and VAMP-8 for VAMP-2 (5). Finally, when
the crystal structure of the late endosomal SNARE core
complex was solved, it was found to be markedly sim-
ilar to that of the neuronal SNARE complex, with the
ionic central layer being conserved and most variations
occurring on the surface (4). These observations indi-
cate that many of the features of the neuronal SNARE
complex could well be conserved throughout the entire
SNARE family.

THE SNARE HYPOTHESIS AND THE “MINIMAL FUSION
MACHINERY”

What, then, do SNARE complexes accomplish? The
so-called SNARE hypothesis has served as the de facto
answer to this question for some time. It proposes that
SNAREs comprise the specificity determinants for
membrane fusion: if SNAREs were localized to distinct
membrane compartments and only competent to form
complexes with appropriate cognate SNAREs, this
would impart a lock-and-key specificity to SNARE-
mediated fusion (116). SNAREs resident on vesicles
are therefore referred to as v-SNARES, and SNAREs
resident on target membranes as t-SNAREs. [These
designations generally correspond to another SNARE
nomenclature, that of q- and r-SNAREs. The q/r desig-
nations are based on the amino acid donated by the SNARE
to the ionic central layer. Generally, t-SNAREs—
SNAP-25, syntaxin 1A, and their relatives—corre-
spond to q-SNAREs, and v-SNAREs—VAMP and its
relatives—correspond to r-SNAREs (33). We use the
v/t-SNARE designations in this article.]

A dramatic set of experiments conducted by Roth-
man and colleagues has sought to confirm the SNARE
hypothesis and has resulted in a bold addendum to the
hypothesis. Initially, the group reconstituted the neu-
ronal SNAREs into liposomes. When liposomes con-
taining VAMP-2 were mixed with liposomes containing
syntaxin 1A and SNAP-25, they observed membrane
fusion (131). This led to the conclusion that SNAREs
are sufficient for membrane fusion, the “minimal ma-
chinery” for this process. This property of the system
allowed the group to test the specificity posited in the
SNARE hypothesis. Using proteins from Saccharomy-
ces cerevisiae because of its completely sequenced ge-
nome, they created a combinatorial panel of liposomes
containing v- and t-SNAREs known to be involved in
three distinct membrane trafficking steps in the cell.
With one exception, only the v- and t-SNARE combi-
nations that function in vivo mediated membrane fu-
sion in vitro (76). Furthermore, when liposomes con-

taining the three sets of t-SNAREs were used against
an expanded panel of all 11 v-SNAREs found in the
yeast genome, only in vivo-identified complexes dis-
played fusion, again with one exception (76). They
went on to show that complexes only form and lead to
fusion when the v-SNARE resides on one membrane
and the t-SNAREs reside on the other; the system does
not tolerate topological switching within a functional
complex (91). The group has since used the system to
show that the SNARE complex forms in an orderly
manner, “zippering” from NH2 terminus to COOH ter-
minus, and that this zippering must be completed for
membrane fusion to occur (78). Thus, in addition to the
conclusion confirming the SNARE hypothesis, the
group has asserted that SNAREs are also the minimal
machinery for biological membrane fusion. These roles
are illustrated in Fig. 2.

Numerous criticisms have confronted these experi-
ments. First, many have pointed out that the speed
with which the Rothman fusion reactions proceed is far
too slow to be physiological. The group responded by
repeating the experiments with a truncated version of
syntaxin 1A that contains the SNARE domain but
lacks a regulatory domain at its NH2 terminus (92).
This approach did speed the in vitro fusion reaction
from one round of fusion per hour to almost three
rounds of fusion per hour (92). Though this is clearly an
improvement, it is still nowhere near the speed with
which the neuronal fusion reaction occurs in vivo. Sec-
ond, the in vitro system does not use biological mem-
branes. It is well established that synthetic mem-
branes can be induced to fuse with each other under a
number of conditions (12), some of which require no
protein (45, 101, 128). The differences between biolog-
ical and synthetic membranes manifest in both compo-
nents of the membrane. First, consider the lipid com-
position of the membrane. Does the composition of the
synthetic membrane reflect a genuine membrane? Do
the supermolecular structures of a natural membrane
form in the synthetic membrane (130)? What effects do
they have on membrane merging? Second, the contri-
bution of protein to the biophysical properties of the
membrane should not be ignored. Many biological
membranes are 50% or more protein by mass, obvi-
ously exerting a large effect on the properties of the
membranes. Related to this is the concern that the
membranes employed in the system simply need to be
held in close apposition to undergo fusion. The Roth-
man group addressed this criticism by replacing the
transmembrane domains of SNAREs with phospho-
lipid anchors. These modified SNAREs formed com-
plexes but were unable to mediate membrane fusion
(77). Finally, the Rothman system was attacked by
many who doubted whether the lipid-mixing assay of
fusion employed by the group actually reflected genu-
ine, complete membrane fusion. The group repeated
the original experiments using a content-mixing assay
and showed that the events that they reported re-
flected complete fusion of liposomes and mixing of
aqueous contents (84).

C239INVITED REVIEW

AJP-Cell Physiol • VOL 285 • AUGUST 2003 • www.ajpcell.org



DO SNARES MEDIATE SPECIFICITY IN VIVO?

With these striking in vitro results, the SNARE hy-
pothesis has acquired a conceptual partner, that of the
minimal fusion machinery. Are SNAREs the determi-
nants of specificity in vivo? Are they also the minimal
machinery for membrane fusion? Are they both? First, let
us further examine the issue of specificity. Some obser-
vations have suggested that SNAREs really do mediate
the specificity of membrane fusion in living cells. When
SNARE proteins are overexpressed in COS cells and then
immunoprecipitated, VAMP-2 is found to form complexes
with syntaxins 1 and 4, but not with syntaxins 2 or 3 (14).
Furthermore, overexpression of wild-type syntaxin 3 in
Madin-Darby canine kidney (MDCK) cells selectively in-
hibits trans-Golgi-to-apical membrane traffic (72). Al-
though both observations suggest that SNAREs can pro-
vide at least some degree of specificity in living cells, an
accruing body of evidence suggests that this degree is
actually quite low in vivo.

SNAREs have been shown to be fairly promiscuous
in their interactions. In fact, even SDS-resistant com-
plexes readily form between noncognate SNAREs in
vitro (31, 137). However, the Rothman group proposed
that the apparent nonspecificity was due to the soluble
SNARE fragments that were used in these studies;
membrane association, they argued, would impose ad-
ditional constraints on the proteins and lead to inter-
active specificity (76). Nevertheless, examples from cel-
lular systems argue that SNAREs do not account for
the specificity of membrane fusion. Certain SNAREs
mediate more than one transport step and, in so doing,

incorporate into more than one SNARE complex. The
v-SNARE Vti1p forms a complex with the t-SNARE
Vam3p in mediating two distinct biosynthetic path-
ways (36). It also pairs with two other syntaxin-like
t-SNAREs: with Sed5p to mediate retrograde traffic to
the cis-Golgi, and with Pep12p to mediate traffic from
the Golgi to the prevacuolar compartment (73, 125).
Vam3 and Pep12 deletions cause distinct trafficking
defects that confirm their assignment to the specific
steps described above. However, a Vam3 deletion can
be rescued by Pep12 overexpression and vice versa
(23), indicating that, in a pinch, either of these t-
SNAREs can substitute for the other in vivo and the
secretory pathway still functions normally. Moreover,
besides its complex with Vti1p, Vam3p pairs with the
v-SNARE Nyv1p to mediate homotypic fusion of the
vacuole (83). A similar situation exists for Bet1p, a
SNARE that can function in both ER-to-Golgi and
intra-Golgi retrograde transport (123). In animals, the
t-SNARE syntaxin 7 can interact with the v-SNAREs
VAMP-7 and VAMP-8 (126). Furthermore, in Drosoph-
ila melanogaster, the neuronal VAMP-2 homolog can
be functionally replaced in vivo by a v-SNARE that
normally operates in an earlier stage of the secretory
pathway and vice versa (10). Moreover, in Drosophila,
syntaxin 1A is expressed throughout the axonal
plasma membrane, yet synaptic vesicles only fuse with
the plasma membrane at the synapse (110). These
observations imply that SNAREs simply do not provide
the level of specificity that is needed for cellular integ-
rity. Additional mechanisms are clearly required.

Fig. 2. SNARE hypothesis and minimal fusion machinery. Membranes that are to undergo fusion contain
v-SNAREs or t-SNAREs. As a step in fusion, v-SNAREs in one membrane form a highly stable complex with
t-SNAREs in the other membrane. This membrane-connecting complex is called a trans-SNARE complex and,
according to the SNARE hypothesis, only forms among specific sets of SNAREs. Once the membranes are so bound,
the minimal fusion machinery hypothesis states that the SNARE complex causes membrane fusion. In addition to
its role in pinning membranes together, the SNARE complex may cause dehydration of the membranes, thus
removing an important energetic barrier to fusion. SNARE complex formation may also exert a force on membrane
lipids, causing them to transition into a fusion intermediate (for simplicity, not shown here). After complete fusion
of the membranes, SNAREs reside in the same membrane as a cis-SNARE complex. This complex must be
disassembled and recycled for its components to catalyze further rounds of fusion.
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Although SNARE complex formation does not criti-
cally determine the specificity of intracellular mem-
brane fusion events, some degree of subunit composi-
tion specificity is encoded therein. The SNARE com-
plex does not form if its components are mutated so
that more than one arginine is present in the ionic
central layer, though it does not matter which SNARE
donates it. If the ionic central layer glutamine in the
syntaxin 1A homolog or either glutamine in the
SNAP-25 homolog is mutated to arginine, the SNARE
complex will still form normally as long as the VAMP-2
homolog arginine is mutated to glutamine (58, 89). The
ionic central layer can therefore help prevent forma-
tion of complexes without the appropriate subunit com-
position by preventing multiple v-SNAREs from incor-
porating into complex. This subunit composition spec-
ificity may not be absolutely conserved, however,
because functional SNARE complexes can sometimes
still form if the ionic central layer arginine is not
present at all (58, 89). One must therefore conclude
that the ability of the ionic central layer to mediate
even subunit composition specificity is not complete. In
fact, the primary purpose of the central layer may be to
assist in complex disassembly by NSF and �-SNAP
(108).

ARE SNARES THE MINIMAL FUSION MACHINERY?

Turning to the partner of the SNARE hypothesis, we
must consider whether SNAREs comprise the minimal
fusion machinery, as the Rothman group’s experiments
assert. Theirs is not the only argument that this is
indeed the case. It was noted some time ago that
SNAREs might be able to contribute the energy neces-
sary to overcome the biophysical barriers to fusion by
forming the ultra-stable SNARE complex (44, 113).
Determining whether the free energy gained by com-
plex formation is sufficient has been more challenging,
but it is widely thought that several SNARE complexes
working in concert would clearly be able to contribute
the requisite energy through formation of complex
multimers, perhaps forming a “fusion pore” (55). In-
deed, SNAREs are not randomly distributed through-
out membranes but are concentrated at certain sites in
a cholesterol-dependent manner (64) and are known to
be active only in certain restricted sites within a fusing
membrane (64, 129). Such regional concentrations sup-
port the idea that SNAREs work in concert and should
generally allay any concerns about the free energy
available in SNARE complex formation to pay the
energetic “fusion debt.” Another series of observations
supporting the idea that SNARE complexes directly
power membrane fusion is the qualitative correlation
between the stability of the SNARE complex and its
ability to mediate fusion. Mutations in SNAREs that
allow complexes to form, but with reduced stability,
generally lead to reduced exocytic activity in live Dro-
sophila (34).

The idea that SNAREs might be the minimal fusion
machinery was proposed with knowledge of another
well-studied fusion system, that of viral fusion pro-

teins. A number of enveloped viruses, including influ-
enza and human immunodeficiency virus (HIV), use
these proteins to invade host cells through a membrane
fusion process. The proteins responsible for this event,
which include influenza hemagglutinin and HIV gp41,
are single integral membrane proteins that undergo a
pH-dependent conformational change, often a proteo-
lytic processing step, and invade the host membrane by
inserting into it a short sequence known as the fusion
peptide (50). There are remarkable structural similar-
ities between the fusogenic state of viral fusion pro-
teins and the core SNARE complex, suggesting a re-
lated function (13, 50, 51). It has been proposed that
one of the functions of viral fusion proteins is to bring
the fusing membranes close together, a role that these
proteins could very well share with SNAREs. Many
other aspects of the structure and biology of viral
fusion proteins, including the nature of the fusion
peptide (120, 121), are active and productive areas of
research and beyond the scope of this review. However,
they do provide a strong rationale for the minimal
fusion machinery idea, as was appreciated in the pro-
posal of this idea (131).

Complex formation is closely followed temporally by
exocytic fusion in permeabilized PC-12 cells (18), and
the authors of this study assert that a tight temporal
correlation makes a fusion mechanism in which SNAREs
directly mediate membrane fusion the most likely. This
is somewhat unconvincing because of the time resolu-
tion in the study, which is much slower than the
exocytic events that were being measured. More signif-
icantly, the invocation of the temporal and/or spatial
correlation of SNARE complex formation with fusion
as evidence that SNAREs are the minimal fusion ma-
chinery in vivo underscores the difficulties in proving
this hypothesis. Studies correlating complex formation
with fusion in vivo show that the SNARE complex is
important for fusion, not that it is the minimal fusion
machinery because many other components are also
present. This was a part of the rationale for undertak-
ing the in vitro experiments of the Rothman group
(131), and these experiments remain the most compel-
ling evidence that SNAREs fulfill the role of minimum
fusion machines. One must remain cognizant of the
aforementioned difficulties in extending these results
to in vivo systems, however.

Empirical difficulties with the proposal that SNAREs
are minimal fusion machines arise in the permeabilized
PC-12 cell study cited above, in which SNARE com-
plexes with markedly lower stability than wild type
supported exocytosis at or above wild-type levels (18).
Other studies also indicate that SNAREs are not the
cell’s minimal fusion machinery. In both isolated sea
urchin cortical granules (20) and yeast vacuoles (124),
SNARE complexes form as a part of the fusion process
but can then be disassembled before completion of the
process without affecting the kinetics or frequency of
fusion. In fact, at least two requisite fusion steps occur
downstream of SNARE complex formation in the yeast
vacuole: one is dependent on protein phosphatase 1
activity (94), and one is sensitive to Ca2�/calmodulin
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(96). The fusion events facilitated by VAMP-2 continue
to occur in VAMP-2 knockout mice, though with lower
frequency (109). Moreover, the thermodynamic and
kinetic properties of SNAREs may not be suitable for
driving fusion as it is observed in vivo. In vitro, SNARE
complex formation is a two-step process with a half-
time (t1/2) of 1 min for the first step and a t1/2 of 1 h for
the second step (32). Without the help of other proteins,
complex formation simply cannot support the millisec-
ond fusion observed at the synapse or even the slower
events observed in secretory cells. Furthermore, the
unusual stability of the SNARE complex is difficult to
reconcile with the fast reversibility of kiss-and-run-
type fusion events, in which the vesicular contents are
released into the outer environment and the vesicle is
reformed on an extremely fast (subsecond) time scale
(1, 25, 117).

ALTERNATE ROLES FOR SNARES IN FUSION

If SNAREs are not the minimal fusion machinery,
bringing membranes together and directly causing
their fusion, then what do they do? Alternate roles
have been proposed for them outside of actually caus-
ing the terminal fusion step. First, they may, in fact, tie
membranes together, but only to allow or facilitate
subsequent events that actually fuse the membranes.
This type of role has been suggested in the yeast
vacuole system, in which SNARE complex formation
allows close apposition of membranes, upstream of
trans-association of v-type ATPases, which also acidify
the vacuolar interior (95). The association of v-type
ATPases may then drive the actual membrane fusion
event by creating a proteinacious fusion pore that ex-
pands in a Ca2�/calmodulin-dependent manner and
may ultimately lead to membrane fusion (95). Second,
they may act primarily as licensing or signaling fac-
tors, connecting the fusion machinery to other events
in the cell (35). For example, SNAREs could tie fusion
to upstream signaling events. In the sea urchin cortical
granule system, the intact SNARE complex is not re-
quired for fusion, yet SNAREs are present and the
complex has been shown to form before membrane
fusion (20). In this case, it has been proposed that
SNAREs modulate the sensitivity of the fusion reaction
to cytosolic Ca2�; this role has also been proposed in
the neural synapse (118). Playing a role in the Ca2�

sensitivity of fusion could be an important role for
SNAREs in many systems but cannot be universal,
because the Ca2� requirement for yeast vacuole fusion
is downstream of SNARE complex formation (96). Also,
some exocytic systems have no demonstrable Ca2�

requirement. For example, secretion by the gastric
parietal cell requires SNAREs for exocytic activity (2,
56, 57, 96), yet the system functions well in the absence
of any cytosolic Ca2� increase (82). Finally, a more
general way for the SNARE complex to direct fusion
may be through providing a platform for the assembly
of the remaining fusion machinery. In this way,
SNAREs could connect upstream signaling events with
requisite downstream steps. The SNARE complex can

then be seen as a signaling molecule itself, bringing
together other fusion reaction participants in a con-
structive manner. We refer to this idea as the “SNARE
signaling hypothesis” as we discuss it further. This
model is not exclusive of the close apposition model,
and, indeed, SNAREs may fulfill more than one func-
tion in a given fusion event.

The idea that SNAREs may serve a signaling role is
supported by the fact that the surface of the SNARE
complex contains many distinctive subsurfaces (e.g.,
grooves, charged patches) that are putative binding
sites for other proteins (4, 119). Given this hypothesis,
however, it would not then be necessary for the com-
plex to be embedded in both fusing membranes to
function. As long as the complex were targeted to the
correct site and formed at the appropriate time, it
would be able to support membrane fusion. There are
hints of this in the literature. First, though fusion steps
are inhibited in yeast whose t-SNARE Pep12 is de-
leted, the phenotype can be rescued by expressing a
truncated version of Pep12 whose transmembrane do-
main has been deleted (41). In permeabilized PC-12
cells, a mutation in SNAP-25 that eliminates a feature
at the surface of the SNARE complex (i.e., the signal-
ing part) is deficient in its ability to support exocytosis,
despite the wild type stability of the complex (18).
Certainly, the signaling hypothesis presents an excit-
ing possibility.

If the SNARE complex is to organize the fusion
machinery, then there have to be other components of
the machinery. Proteins must be identified that inter-
act with SNAREs and/or the SNARE complex. At the
current time, a number of proteins have been shown to
interact with these proteins and play a role in mem-
brane fusion. One group of such proteins is the SM
proteins. SM proteins are a family of soluble proteins
with the ability to bind to t-SNAREs (38). They are
known to regulate membrane fusion in a variety of
systems, including the neural synapse and the yeast
secretory pathway (7, 88). SM proteins were originally
thought to bind to syntaxin and make it unavailable for
complex formation (26), though it has become clear
that, at least in some cases, they can bind the entire
SNARE complex (15). Moreover, this binding can have
effects quite distinct from negative regulation of com-
plexation. In yeast, the SM protein Sly1p binds the
t-SNARE Sed5p and readily allows SNARE complexes
to form, while apparently controlling the specificity of
SNARE associations (93). Sly1p can also bind pre-
formed SNARE complexes in vitro (93). This is not
always the case for SM proteins, because binding
nSec1, a neuronal SM protein, precludes incorporation
of syntaxin 1A into SNARE complexes (138). Further-
more, various SM proteins can bind to different do-
mains of the SNAREs with which they associate (26,
60, 61). These data indicate that the mechanism of SM
and SNAREs in vivo may not be entirely universal.
Gallwitz and Jahn (38) have hypothesized that SM
proteins also interact with non-SNARE proteins in the
process of membrane fusion and that these interac-
tions are just as important as SM protein-SNARE
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interactions. In the end, it is currently difficult to say
whether SM proteins are generally regulators of
SNARE function, components of the fusion machinery
(see below), or both.

Synaptotagmins are proteins with Ca2�- and phos-
pholipid-binding C2 domains that reside in plasma
membranes and vesicles. Their requirement for fast
synaptic transmission has led to the proposal that they
are the Ca2� sensors in this process (17). Syntaxin 1A
and SNAP-25 isolated from bovine brain bind endoge-
nous synaptotagmin I (104). Moreover, binding of syn-
aptotagmins I and IX to SNAP-25 is required during
Ca2�-dependent exocytosis in PC-12 cells (27, 139). A
study has suggested that synaptotagmins bind Ca2�

and transduce a signal to associated t-SNAREs, which
then interact with v-SNAREs (67). Synaptotagmins
also associate with v-SNAREs, a phenomenon that
may regulate posttranslational O-glycosylation of syn-

aptotagmin (37). The necessity of the SNARE-synapto-
tagmin interaction for membrane fusion, however, has
not been unequivocally established. For instance, there
is evidence in PC-12 cells that the process of membrane
fusion critically depends on the ability of synaptotag-
mins to bind phospholipids and not SNARE complexes
(111). This is consistent with the hypothesis that
SNAREs are involved in regulating the fusion ma-
chine, rather than being its minimal component.

A variety of other fusion components also interact
with SNAREs in ways indicating that the fusion ma-
chine may be built on the SNARE complex. Complexins
are proteins that rapidly and tightly bind to the
SNARE complex (48, 90) and are also required for
fusion in the neural synapse, though their exact func-
tion is unclear (105). It has been suggested that com-
plexins regulate closure of the SNARE-based fusion
pore and could be critical for kiss-and-run exocytosis

Table 1. SNARE-interacting proteins

Protein or Component Source SNAREs Bound Comments Refs.

Amisyn M Syntaxins 1A, 4 Homology to VAMP; involved in PC-12 cell exocytosis 107
Calmodulin M VAMP-2 Ubiquitous Ca2� sensor 100
CaM kinase II M Syntaxin 1A Protein kinase involved in neural processes 86
CFTR M Syntaxin 1A Cl� channel; regulated salt and water balance in

epithelia
22

Complexins M SNARE complexes May regulate closure of the fusion pore 48,90
ENaC M Syntaxin 1A Epithelial Na� channel important in salt and water

balance
19

�-Fodrin M Syntaxins 1,3,4 Nonerythroid spectrin 81
GAP-43 M Synaptic SNARE

complexes
Localized to axonal growth cones and presynaptic

membranes
46

Hrs2 M SNAP-25 Ca2�-regulated ATPase 8
Myosin V M VAMP ATP driven motor protein implicated in vesicle traffic 87
N-type Ca2� channels M Syntaxin 1A Participate in fast neurotransmitter release 9
Ocsyn M Syntaxin 1A Localized to organ of Corti 106
p115 M Various Membrane tethering protein localized to Golgi 39
Pallidin M Syntaxin 13 Highly charged novel protein; also present in higher

order complex
49

Phospholipids M, Y Various (v and t) SNAREs tend to bind negatively charged lipids 100,127
Q-type Ca2� channels M Syntaxin 1A Participate in fast neurotransmitter release 9
Rim M SNAP-25, syntaxin 1A Also interacts with GTP-bound rab3 21
Sec20p Y Ufelp (t) Functions in ER-Golgi transport 102
SIP30 M SNAP-25 Mostly expressed in brain 68
Spring M SNAP-25 Ring-finger containing protein 69
Synaptophysin M VAMP Tends to prevent complex formation 29
Synaptotagmin I M SNAP-25/syntaxin 1A

binary complex
May couple exocytosis to Ca2� signals 104

Synaptotagmin I M VAMP Modulates O-glycosylation of synaptotagmin 37
Synaptotagmin IX M SNAP-25 May couple exocytosis to Ca2� signals 27,139
Synip M Syntaxin 4 SNARE-binding is insulin dependent 79
Syntaphilin M Syntaxin I Expressed neuronally 66
Taxilin M Syntaxins 1A and 4 Restricted to neutoendocrine cells 85
Tip20p Y Ufelp (t) Funcions in ER-Golgi transport 102
VAP-33, A, B A, M VAMPs Also binds to occludin in tight junctions in

mammalian cells
114,132,133

VFT docking complex Y Tlglp (t) Docking complex 112
VSM1 gene product Y Snclp, Snc2p (v) May negatively regulate constitutive exocytosis 75
Vtc docking complex Y Nyvlp (v) Ties fusion machinery to v-ATPase 80

The proteins listed have been shown to directly interact with individual SNAREs and SNARE complexes. New SNARE-interactive proteins
are continually being discovered, and intractions are being discovered for known proteins. Several of the proteins are proposed to regulate
SNARE interactions, though some may have additional functions. Many of the proteins listed here have homologues in other species. The
emphasis here is on mammalian proteins (including proteins identified in mammal-derived tissue cultures), though several yeast proteins
are included to illustrate the breadth of SNARE-binding proteins. Source: M, mammalian; Y, yeast; A, Aplysia californica. In the case of
SNAREs from yeast, a (t) or (v) after the name indicates a t-SNARE or v-SNARE, respectively. Many proteins that exist in higher order
complexes with SNAREs, but for which no direct interaction has been demonstrated, are not listed here. SM proteins are not shown here;
a table summarizing their binding and functions can be found elsewhere (38).
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(6, 103). Calmodulin kinase II (CaMKII) interacts with
syntaxin at the neural synapse exclusive of the SM
protein munc18 (86). This interaction increases the
ability of syntaxin to bind both synaptotagmin and
SNAP-25, suggesting that the CAMKII/syntaxin 1A
complex may regulate or coordinate a step in core
complex formation. In the yeast vacuole system, a
t-SNARE was found to interact with proteolipid sub-
units (V0) of the v-ATPase (95), and a v-SNARE was
found to indirectly associate with V0 through a com-
plex of vacuolar transport chaperone (Vtc) proteins
(80). Though these results do not establish that V0
binds the entire SNARE complex, they do indicate that
the function of this putative component of the fusion
machinery is affected by its binding (or not) to
SNAREs. In PC-12 cells, binding of calmodulin and
phospholipids to VAMP is required for exocytosis,
though not for formation of the SNARE complex (100).
[This is not the only indication that binding of the
fusion machinery to phospholipids is important for
fusion. In the yeast vacuole, the SNAP-25 analog
Vam7p cycles off of the membrane and is re-recruited
to the fusion machinery via binding to phosphatidyl-
inositol 3-phosphate (11).] A number of other proteins
are known or implicated to regulate exocytosis, inter-
act with one or more individual SNAREs, and could be
regulated by interactions with either individual
SNAREs or SNARE complexes. Among these proteins
are the recently described syntaphilin (66), the VSM1
gene product (75), and the Chediak-Higashi protein
(122). Ion channels, a class of proteins of high interest
to physiology, are also known to associate with certain
SNARE proteins. N- and Q-type Ca2� channels were
first observed to behave this way (9), though epithelial

Na� channels (ENaC) (19) and cystic fibrosis trans-
membrane conductance regulator (CFTR) (22) also
participate in interactions with SNAREs. The role that
this phenomenon plays in the fusion process (if any) is
unclear, though it is clear that SNARE binding to ion
channels can alter the open probability (16) and/or
affect the slow inactivation process of the channel (24).
Table 1 lists several proteins that have been shown to
interact directly with SNAREs.

In several cases, knowledge of the fusion machinery
has expanded beyond elucidation of single proteins
that interact with SNAREs and/or SNARE complexes.
In the yeast vacuolar sorting pathway, the t-SNARE
Pep12p interacts with the SM protein Vps45p, which
interacts with an adaptor (Vac1p) that associates with
the rab-like GTPase Vps21p in its GTP-bound form
(97). Similarly, in the yeast Golgi, the t-SNARE Tlg1p
and GTP-bound Ypt6p (another rab GTPase) interact
indirectly through binding different subunits of a pro-
teinaceous complex that mediates membrane associa-
tion before trans-SNARE complex formation, the VFT
(Vps fifty-three) docking complex (112). These results
are provocative because they link two protein families
required for trafficking, SNAREs and rabs, more pre-
cisely and convincingly than previous studies (70, 74).
The indirect and transient nature of these connections
also highlights the technical challenges involved in
identifying all components of the fusion machinery. A
summary of the roles that SNAREs may play in some
or all complex fusion machines can be found in Table 2.

The identification of SNARE-interacting proteins
does not in itself prove the SNARE signaling hypothe-
sis. These proteins could also reflect an elaborate cel-
lular scheme by which to regulate formation of the
minimal fusion machinery. However, in addition to the
data summarized in the previous section, the SNARE
signaling hypothesis is recommended by its resolution
of some issues in the fusion area. For example, it can
reconcile the permissiveness of SNARE-SNARE inter-
actions with the specificity of the fusion events in
which they participate, implied by their distinct sub-
cellular localizations. Rather than being a lock-and-
key determinant of specificity, SNAREs may fit specific
fusion reactions by the surfaces they create upon com-
plexation, thereby directing the assembly of specific
fusion machines, though the cohorts of fusion machine
participants may overlap. The SNARE signaling hy-
pothesis can thus explain why SNAREs are required
for so many mechanistically and kinetically distinct
fusion steps in a more satisfying way than the minimal
fusion machinery idea can. Also, it is much easier to
reconcile the fact that SNARE complexes with sub-
maximal stabilities can support exocytosis very well,
while some complexes with high stability cannot at all
(18, 43) within the framework of the signaling idea. It
is important to remember, however, that not every-
thing known about SNAREs may be equally applicable
to different systems. Two of the best-studied fusion
systems, the neural synapse and the yeast vacuole,
have many similarities in terms of the types of proteins
involved yet have apparently very distinct mechanisms

Table 2. Roles for SNAREs in a complex fusion machine

Role Ref.

Before fusion

Determination of the fusion site 64, 129
Modulation of fusion sensitivity to

cytosolic [Ca2�]
20, 118

Maintenance of close membrane
apposition, allowing for further fusion
steps

95

Licensing of fusion (i.e., detection of
SNARE complex by fusion machinery
increases likelihood of fusion)

35

During fusion

Recruitment of fusion machinery into
fusion machine

4, 15, 48, 90, 93, 95,
97, 112, 119

Releasing proteins upon formation of the
SNARE complex, which could
inactivate regulatory proteins or
activation proteins involved in fusion

88, 138

Binding of lipids, causing or facilitating
their transition to a fusion state

11, 100

After fusion

Imparting vectorality to fusion events
that are not kiss-and-run

42
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of fusion. Table 3 provides a brief comparison of these
two events, highlighting some of what is known about
SNARE-interacting proteins and the potential role of
SNAREs in each system.

IS THE SNARE COMPLEX NECESSARY FOR FUSION?

The alternative models of SNARE complex function
that have been described thus far all retain an impor-
tant facet of the SNARE hypothesis. This is the as-
sumption that the super-stable complex observed in
cells has some direct role in fusion. It has also been
proposed that this complex has no physiological func-
tion per se but is an end state reached after SNARE
function is completed (42). In this model, the functional
SNARE complex is of a much higher free energy than
the traditional complex and forms quickly and revers-
ibly. These features would reconcile, at least to some
extent, the discrepancy between SNARE complex for-
mation kinetics and the kinetics of physiological mem-
brane fusion. Speed and reversibility in complex for-
mation also provide an attractive mechanism by which

kiss-and-run exocytosis could be mediated by SNAREs.
Interestingly, there is evidence for a so-called “loose”
SNARE complex that can support membrane fusion
(136). This complex is made of the same SNAREs that
form the traditional “tight” SDS-resistant complex, but
its components are susceptible to cleavage by clostrid-
ial neurotoxins, establishing it as clearly distinct from
the classic complex (47). One marked disagreement
between the experiments and the model, however, is
that the loose complex supported a slower rate of fusion
than the tight complex (136). This may simply reflect
the fact that the apparently tight complexes were only
end products of previous fusion reactions. In the light
of structural data and the signaling idea, it is plausible
that a loose SNARE complex could help to direct fusion
and that proceeding to the tight complex lends vecto-
rality to fusion, at least in cases that are not kiss-and-
run.

Another alternative SNARE complex is the so-called
t-SNARE complex. The t-SNARE complex is a binary
association of, for example, syntaxin 1A and SNAP-25.

Table 3. Comparison of well-studied fusion events

Synaptic Vesicle Fusion Yeast Vacuole Fusion

Components
Tethering proteins Bassoon? Piccolo? Aczonin? HOPS complex
Rab GTPase Rab3 Ypt7p
SM protein nSec1 None known
t-SNAREs Syntaxin 1A Vam3p

SNAP-25 Vam7p
v-SNARE VAMP-2 Nyvlp
Ca2�-binding proteins Synaptotagmin Calmodulin

Calmodulin? RIM? Annexin?
Ca2� source Extracellular space, through plasma

membrane Ca2� channels
Vacuolar interior

Other proteins V-type ATPase, protein phosphatase 1
Process

Priming Vacuoles undergo complex priming process
involving disassembly of cis-SNARE complexes
by Sec17/18 (NSF/�-SNAP)

Membrane association Synaptic vesicles associate with the plasma
membrane, perhaps through one of the
docking complexes listed above

Vam7p �GTP mediates tethering of vacuoles after
activation by HOPS

Rab3 �GTP mediates displacement of nSec1
from syntaxin

Trans-SNARE complexes form as tethered
vacuoles dock

Ca2� influx, caused by plasma membrane
depolarization, causes zippering of
SNAREs to form trans-SNARE
complexes

Trans-SNARE complexes lead to Ca2� release
from vacuole; Ca2� binds to calmodulin leading
to formation of trans-complexes between
calmodulin, Vam3p, and the V0 subunit of the
v-type ATPase

Membrane fusion Membrane fusion occurs, perhaps as a
direct result of trans-SNARE complex
formation

Action of protein phosphatase 1 on an unknown
target triggers membrane fusion

Recycling Cis-SNARE complexes in membrane are
disassembled by NSF/�-SNAP and
recycled

Geometry Vesicle fuses with plasma membrane;
sometimes quickly reversible (i.e., kiss-
and-run)

Vacuoles fuse along large sites of contact (vertices)
leading to formation of small intravacuolar
membranes as a consequence of membrane
fusion.

Time course Milliseconds to milliseconds Seconds to minutes

Comparison of two of the best-known SNARE-mediated fusion processes, fusion of synaptic vesicles with the axonal membrane and
homotypic fusion of vacuoles in yeast. Many of the components of the tethering, docking, and fusion machinery are homologous between these
systems. The process, however, is much different. This comparison was constructed from a pair of excellent reviews on the respective fusion
events. The mechanism of the vacuolar fusion event is known in great detail—many of these details were omitted to facilitate comparison
between vacuolar fusion and the more speculative process described for synaptic fusion. See these reviews for full details (71, 134).
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The structure of the neuronal t-SNARE complex has
been determined, revealing a four-helix parallel bundle
consisting of two copies of syntaxin 1A and one copy of
SNAP-25 (135). It is generally thought that the t-
SNARE complex represents a starting point for forma-
tion of the classic ternary SNARE complex, though a
recent observation questions this view. In permeabil-
ized chromaffin cells, stimulation of exocytosis led to
increased formation of a variety of t-SNARE com-
plexes, having different sizes and, presumably, states
of oligomerization and quaternary structure (67). In-
terestingly, inhibition of secretion by botulinum neu-
rotoxin A, which cleaves SNAP-25, did not inhibit the
formation of t-SNARE complexes in response to Ca2�,
though it did alter the composition of t-SNARE com-
plexes and increase the number of ternary SNARE
complexes drastically (67). These results suggest that
there may be a role for the t-SNARE complex(es) in
membrane fusion besides, or in addition to, a precursor
to formation of the classic SNARE complex.

SNARES BEYOND THE SNARE DOMAIN

Another assumption that has been maintained
throughout this discussion is that the SNARE domains
comprise the most critical features of SNARE function.
Though fairly small, SNARE proteins do contain other
domains, especially a three-helix bundle that is present
at the NH2 terminus of many different SNAREs (3).
Interactions between these domains and other proteins
and/or the SNARE domains of the complex may serve a
purpose that is quite as important as the function of
the SNARE domains. However, this role is probably
regulatory and does not directly participate in the
fusion reaction (26). Alternatively, it has been pro-
posed that the transmembrane segments of SNAREs
mediate an important step in membrane fusion (65),
perhaps by driving dimerization (63) or assisting in
complex formation (98), though this is not true in all
cases, because transmembrane segments of SNAREs
can be removed without affecting function in yeast
(41). The COOH-terminal calmodulin- and phospholip-
id-binding domain of VAMP is distinct from the
SNARE domain (100) and does seem to be required for
exocytosis in PC-12 cells. The cysteine-rich region that
bridges the two SNARE domains of SNAP-25 has been
implicated in recruiting SNAP-25 to SNARE com-
plexes (62). Overall, the prevalent feeling in the field,
whether the complete SNARE hypothesis is accepted
or not, is that the assumption regarding the preemi-
nence of the SNARE domain is supported by the weight
of evidence.

Conclusion

In summary, SNAREs have captured the imagina-
tion of virtually everyone in the field of membrane
fusion. They possess features that recommend them as
specificity determinants as well as possibly the mini-
mal fusion machinery. From the Rothman SNARE
experiments, both of these roles are forwarded, though
a growing body of evidence suggests that the actual

physiological process of membrane fusion is much more
complicated. Proteins that interact with SNAREs,
many of which may facilitate complex formation, are
still being discovered today (54). Understanding the
functions of these proteins may give us the insight we
need to finally appreciate the contribution of SNAREs
to cell function. We may also discover that another
assumption that is widely held, explicitly and implic-
itly, that the function of SNAREs is perfectly analo-
gous in every organism and transport step is not actu-
ally true, despite the dramatic similarities in structure
and biochemistry between divergent SNARE com-
plexes. In any case, the groundwork for an exciting and
contentious continuing debate has been laid, and
SNAREs will likely continue to make cell biology head-
lines for the foreseeable future.
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