An Electrostatic Steering Mechanism of Cdc42 Recognition by Wiskott-Aldrich Syndrome Proteins

Lars Hemsath,1 Radovan Dvorsky,1 Dennis Fiegen,1 Marie-France Carlier,2 and Mohammad Reza Ahmadian1,*
1Abteilung Strukturelle Biologie
Max-Planck-Institut für Molekulare Physiologie
Otto-Hahn-Strasse 11
44227 Dortmund
Germany
2Dynamique du Cytosquelette
Laboratoire d’Enzymologie et Biochimie Structurale
CNRS 91198 Gif-sur-Yvette
France

*Correspondence: reza.ahmadian@mpi-dortmund.mpg.de

The specific and rapid formation of protein complexes is essential for diverse cellular processes such as remodeling of actin filaments in response to the interaction between Rho GTPases and the Wiskott-Aldrich syndrome proteins (WASp and N-WASp). Although Cdc42, TC10, and other members of the Rho family have been implicated in binding to and activating the WAS proteins, the exact nature of such a protein-protein recognition process has remained obscure. Here, we describe a mechanism that ensures rapid and selective long-range Cdc42-WASp recognition. The crystal structure of TC10, together with mutational and bioinformatic analyses, proved that the basic region of WASp and two unique glutamates in Cdc42 generate favorable electrostatic steering forces that control the accelerated WASp-Cdc42 association reaction. This process is a prerequisite for WASp activation and a critical step in temporal regulation and integration of WASp-mediated cellular responses.

Introduction

The hematopoietic Wiskott-Aldrich syndrome protein (WASp) (Derry et al., 1994) and its ubiquitous homolog N-WASp (Miki et al., 1996) link intracellular signaling processes to the rearrangement of actin filaments. The generation of new actin filaments by branching is mediated by association of the Arp2/3 complex with WASp (Badour et al., 2003; Bompard and Caron, 2004; Higgs and Pollard, 1999; Millard et al., 2004; Miki and Take
nawa, 2000; Takenawa and Miki, 2001; Thrasher, 2002). The C-terminal verprolin homology, central and acidic (VCA) region, also known as WCA or WA domain of the WAS proteins, binds the Arp2/3 complex as well as globular actin and thereby activates actin polymerization (Buck et al., 2001; Devriendt et al., 2001; Kim et al., 2000; Prehoda et al., 2000; Rohatgi et al., 1999). Besides this downstream activation domain, WASp consists of a central proline-rich domain, an N-terminal WASp homology 1 domain (WH1), and a G protein binding domain (GBD) encompassing a basic region (BR) and a Cdc42- and Rac1- interactive binding (CRIB) motif. In resting cells, WASp is in an autoinhibited state that is characterized by intramolecular interactions between its GBD and the VCA domain (Rohatgi et al., 1999). Binding of active Cdc42 to the GBD has been proposed to release the VCA domain from its masked conformation that is then able to activate the Arp2/3 complex (Buck et al., 2001, 2004; Kim et al., 2000; Miki et al., 1999).

Besides Cdc42, several other members of the Rho family have been reported to directly interact with N-WASp. These include Rac1, TC10, TCL, and RhOT, the latter being a mouse homolog of human TCL (Abe et al., 2003; Aspenstrom et al., 1995, 2004; Neudauer et al., 1998; Vignal et al., 2000). Some of these interactions, however, could not be observed in other reports (Miki et al., 1998; Symons et al., 1998). Therefore, we investigated the binding properties and specificity of the different GTPases regarding WASp and N-WASp association and activation.

Results

Kinetics of the Interaction between Cdc42 and the WAS Proteins

The GBDs of WASp and N-WASp share a high sequence identity (56% identity and 74% similarity) and exhibit similar activities in different qualitative assays. To gain insight into individual rate constants for the interaction of Cdc42 with both WASp154–321 (WASpGBD) and N-WASp142–276 (N-WASpGBD), a detailed kinetic analysis has been performed that takes advantage of fluorescence spectroscopy and mantGppNHp, a fluorescently labeled, nonhydrolyzable GTP analog. Figures 1A and 1B show that there is a rapid decrease of fluorescence upon mixing Cdc42-mantGppNHp with both GBDs in the stopped-flow apparatus. This represents the rapid-association process, as increasing concentrations of WASpGBD result in an incremental increase in the rate of the fluorescence change. The observed rate constants (kobs) obtained by a single exponential fitting increase in a linear fashion as a function of the WASpGBD and N-WASpGBD concentrations (Figure 1C), yielding very high but similar association rate constants (kobs: Table 1). A possible intermediate encounter complex in the association reaction between Cdc42 and WASp, as shown for Ras-effector interactions (Kiel et al., 2004), could not be shown by the setup used above. Thus, we analyzed the association reactions at 10°C because the kobs of the reactions at higher WASpGBD concentrations were too fast at 25°C and exceeded the constraints of the stopped-flow apparatus. As shown in Figure 1D, the hyperbolic dependency of the observed rate constants versus the WASp concentration strongly suggests that the Cdc42-WASp association follows a two-step reaction mechanism.

The dissociation of the GBDs from Cdc42 and WASp, as shown for Ras-effector interactions (Kiel et al., 2004), could not be shown by the setup used above. Thus, we analyzed the association reactions at 10°C because the kobs of the reactions at higher WASpGBD concentrations were too fast at 25°C and exceeded the constraints of the stopped-flow apparatus. As shown in Figure 1D, the hyperbolic dependency of the observed rate constants versus the WASp concentration strongly suggests that the Cdc42-WASp association follows a two-step reaction mechanism.

The dissociation of the GBDs from Cdc42 and WASp, as shown for Ras-effector interactions (Kiel et al., 2004), could not be shown by the setup used above. Thus, we analyzed the association reactions at 10°C because the kobs of the reactions at higher WASpGBD concentrations were too fast at 25°C and exceeded the constraints of the stopped-flow apparatus. As shown in Figure 1D, the hyperbolic dependency of the observed rate constants versus the WASp concentration strongly suggests that the Cdc42-WASp association follows a two-step reaction mechanism.

The dissociation of the GBDs from Cdc42 and WASp, as shown for Ras-effector interactions (Kiel et al., 2004), could not be shown by the setup used above. Thus, we analyzed the association reactions at 10°C because the kobs of the reactions at higher WASpGBD concentrations were too fast at 25°C and exceeded the constraints of the stopped-flow apparatus. As shown in Figure 1D, the hyperbolic dependency of the observed rate constants versus the WASp concentration strongly suggests that the Cdc42-WASp association follows a two-step reaction mechanism.

The dissociation of the GBDs from Cdc42 and WASp, as shown for Ras-effector interactions (Kiel et al., 2004), could not be shown by the setup used above. Thus, we analyzed the association reactions at 10°C because the kobs of the reactions at higher WASpGBD concentrations were too fast at 25°C and exceeded the constraints of the stopped-flow apparatus. As shown in Figure 1D, the hyperbolic dependency of the observed rate constants versus the WASp concentration strongly suggests that the Cdc42-WASp association follows a two-step reaction mechanism.

The dissociation of the GBDs from Cdc42 and WASp, as shown for Ras-effector interactions (Kiel et al., 2004), could not be shown by the setup used above. Thus, we analyzed the association reactions at 10°C because the kobs of the reactions at higher WASpGBD concentrations were too fast at 25°C and exceeded the constraints of the stopped-flow apparatus. As shown in Figure 1D, the hyperbolic dependency of the observed rate constants versus the WASp concentration strongly suggests that the Cdc42-WASp association follows a two-step reaction mechanism.
was rapidly mixed with the protein complexes that led to a single exponential fluorescence increase (Figure 1E) and to similar values of dissociation rate constants for the two GBDs (k_{off}; Table 1). From the ratio of the dissociation and association rate constants ($K_d = k_{\text{off}} / k_{\text{on}}$), equilibrium dissociation constants (K_d) of 74 and 68 nM have been calculated for the Cdc42 interaction with WASpGBD and N-WASpGBD, respectively (Table 1). These high affinities are in good agreement with the values reported for the interaction of Cdc42 with shorter WASp fragments (Rudolph et al., 1998; Owen et al., 2000; Buck et al., 2004) and with the results of an alternative quantitative binding assay, the guanine nucleotide dissociation inhibition (GDI) assay (Table 1; see Figure S1 in the Supplemental Data available with this article online). It is important to note that we did not
Table 1. Kinetic Data of the Interaction of Different Rho GTPases with WAS Proteins and PAK1

<table>
<thead>
<tr>
<th>WASpGBD</th>
<th>N-WASpGBD</th>
<th>PAK1GBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{on}</td>
<td>k_{off}</td>
<td>K_{d}</td>
</tr>
<tr>
<td>Cdc42_{wt}</td>
<td>22</td>
<td>1.7</td>
</tr>
<tr>
<td>Cdc42_{K}</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Cdc42_{KK}</td>
<td>0.59</td>
<td>4.1</td>
</tr>
<tr>
<td>TC10_{E}</td>
<td>0.028</td>
<td>1.2</td>
</tr>
<tr>
<td>TC10_{EE}</td>
<td>0.18</td>
<td>1.0</td>
</tr>
<tr>
<td>TC10_{IT}</td>
<td>0.22</td>
<td>0.83</td>
</tr>
<tr>
<td>TC10_{IT}</td>
<td>0.045</td>
<td>3.9</td>
</tr>
<tr>
<td>TCL_{wt}</td>
<td>no binding</td>
<td>no binding</td>
</tr>
<tr>
<td>Rac_{wt}</td>
<td>no binding</td>
<td>no binding</td>
</tr>
<tr>
<td>Rac_{E}</td>
<td>no binding</td>
<td>no binding</td>
</tr>
<tr>
<td>RhoA</td>
<td>no binding</td>
<td>no binding</td>
</tr>
</tbody>
</table>

Association rates (k_{on} in μM^{-1}s^{-1}), dissociation rates (k_{off} in s^{-1}), and equilibrium dissociation constants (K_{d} in μM) of WASp, N-WASp, and PAK1 binding to the active mantGppNHi form of different GTPases are summarized. K_{d} values have been calculated from the association and dissociation rate constants (K_{d} = k_{off}/k_{on}). GTPases are as follows: Cdc42_{wt}, Cdc42_{K}, Cdc42_{KK}, TC10, Rac1, Rac2, Rac3, and RhoA at various GTPase concentrations.

References:
- Reference data determined by GDI assay (see Supplemental Data).
- a Data by Fiegen et al. (2004).
Figure 2. Specificity-Determining Residues in the GTPase-Effecter Contact Sites

(A) Cdc42·Gpp(CH2)p·WASpGBD complex according to Abdul-Manan et al., 1999. The ribbons (left) and the molecular surfaces (middle) of the structure are both illustrated in the same orientation. The third image (right) is rotated about the vertical axis by 180°. Cdc42 is gray, and WASpGBD is green. The indicated residues and the nucleotides are shown as ball and sticks. Red arrows point to the CRIB binding groove. The positions of the critical glutamates of Cdc42 and the lysines of WASpGBD are depicted in red and blue, respectively.

(B) The TC10·GppNHp·WASpGBD complex was modeled on the basis of the TC10·GppNHp structure (Table S1). The orientation of the structure and the illustration is according to (A). Lys63 and Thr192 of TC10 are shown in blue and cyan.

(C) Electrostatic potentials of wild-type and mutant forms of Cdc42 and TC10 are represented by their isosurfaces at −0.1 kBT/εs (red) or +0.1 kBT/εs (blue), respectively. The orientation of the molecules is the same as in (A) and (B) (left and middle). Residues critical for the association with WAS proteins, Glu49 (Lys63 in TC10), and Glu178 (Thr192 in TC10) of Cdc42 are indicated for orientation. Note that Glu178 and Thr192 are in fact on the other side of the proteins.

GppNHp complex at 2.65 Å resolution (Table S1). With respect to the WASp binding, the TC10 structure, interestingly, did not reveal any obviously significant three-dimensional deviations when compared to the Cdc42 structure in complex with WASp (Abdul-Manan et al., 1999) (Figures 2A and 2B). We next constructed a model of the TC10-WASp complex by superposition of TC10 on the Cdc42 structure in complex with WASp, which was finally refined by a few steps of energy minimization. As shown in Figures 2A and 2B, the overall structure of the model nicely resembles the Cdc42-WASp complex with the CRIB motif of WASp accommodated in the existing groove between α1, α5, and β2 on the surface of TC10. It is of interest to note that we failed to model the corresponding complex with RhoA and Rac1 using the RhoA-GTPγS (Ihara et al., 1998) and Rac1-GTP-p67phox (Lapouge et al., 2000) structures, which is probably attributable to the absence of such a groove in the RhoA and Rac1 structures.

In contrast to the kinetic data, no major differences between Cdc42 and TC10 could be detected when the primary sequence of both GTPases were compared, in particular concerning the residues involved in WASp binding according to the complex structure (Abdul-
Cdc42-WASp Association

Figure 3. Amino Acid Sequence Alignments of Rho GTPases and CRIB-Containing Effectors

(A) Amino acid sequences of human Rho GTPases are aligned with respect to the WASp binding residues of Cdc42 according to Abdul-Manan et al., 1999. Conserved residues are black, variable residues are orange, and residues that do not contact WASp are gray. Glu49 and Glu178 of Cdc42 are red, and the corresponding residues in the other GTPases (boxed) are blue if positively charged. Secondary structure elements and motifs are highlighted at the top.

(B) Sequence comparison of CRIB-containing effectors. Positive (blue) and negative (red) residues of the basic region (BR) and conserved residues of the CRIB motif (gray background) are highlighted. The residues that were subjected to mutational studies are boxed.

Manan et al., 1999) (Figure 3A). Ile21, Thr24, and Thr25 of Cdc42 show minor deviations forming hydrophobic interactions with Phe244 of the CRIB motif of WASp. The corresponding residues in TC10 are Met35, Ala38, and Asn39, respectively. Substitution of these residues to the equivalent Cdc42 residues (referred to as TC10ITT), however, did not increase the affinity of TC10 toward WASp or N-WASp, as characterized by kinetic measurements (Table 1). These data exclude a role of these three CRIB binding residues in determining the specificity toward the WAS proteins.

In addition to the binding residues, clusters of complementarily charged residues located in the vicinity of the protein-protein interfaces are often important for specific and efficient complex formation, as experimental and theoretical studies have demonstrated (Schreiber, 2002). Electrostatic steering, accomplished by such residues, has been shown to enhance the association rate (Kiel et al., 2004; Sheinerman et al., 2000; Sinha and Smith-Gill, 2002). Thus, we examined charged residues in the GTPases beyond the WASp binding regions because of the following: (1) the association reaction represents the main difference between Cdc42 and TC10 in their interaction with the WAS proteins (Table 1); (2) the WASp binding interface is conserved for both GTPases (Figures 2A and 3A); (3) the Cdc42-WASp association follows a two-step reaction mechanism with the first step being the formation of an encounter complex, which evolves into the final complex (Figure 1D); and (4) high salt concentration interferes with the Cdc42-WASp association (Figure 1F). A conspicuous amino acid deviation in Cdc42 is the unique Glu49. This residue is located on the solvent-exposed surface of the loop between the β strands 2 and 3 (Figure 2A) and corresponds to lysine or arginine in most other Rho GTPases (Figure 3A). According to the structure of the Cdc42 and WASp complex (Abdul-Manan et al., 1999), this glutamate does not directly interact with WASp but lies in the vicinity of three lysines of WASp (KKK motif; residues 230–232), which is part of the BR (residues 225–235). Glu178 of Cdc42, which is also absent in nearly all Rho GTPases (Figure 3A), provides another negative charge that is also in close vicinity of the KKK motif of WASp (Figures 2A and 3B).

Mutational Analysis of the GTPase-WASp Interaction

To examine the significance of these two glutamates in the interaction between Cdc42 and WASp, we gener-
Figure 4. Mutational Analyses of Cdc42, TC10, and WASpGBD

(A) Kinetics of WASpGBD association with Cdc42 wild-type and mutants.

(B) Kinetics of WASpGBD association with TC10 wild-type and mutants.

(C) Kinetics of Cdc42 association with WASpGBD wild-type and mutants.

(D) Polymerization of pyrene-labeled actin (2.5 μM) by the Arp2/3 complex (0.02 μM) was measured in the presence and absence of the isolated N-WASpGBD (1 μM), N-WASpVCA (0.1 μM), and various wild-type and mutant GTPases in GDP and GppNHp-bound forms (2 μM).

(E) Actin polymerization under the same conditions as in (D), using full-length N-WASp (0.1 μM) instead of isolated GBD and VCA domains.

ated a single mutant, E49K, and a double mutant, E49K/E178K, of Cdc42 (referred to as Cdc42k and Cdc42kk). The association and dissociation kinetic constants (k_on and k_off) of the interaction of WASp and N-WASp with the purified Cdc42 mutants were determined under the same condition as described above for Cdc42wt (Figure 4A; Table 1). The resulting K_d values were 12-fold higher for Cdc42k (950 nM) and about 93-fold higher for Cdc42kk (6.9 μM). The individual rate constants clearly reveal that incremental loss of binding affinity of the WAS proteins for the Cdc42 mutants is merely caused by decreased association rates, whereas the dissociation rates are not affected (Table 1). It is important to note that the affinity of Cdc42 proteins toward the less specific effector PAK1 is nearly unchanged by the mutations (only 2-fold and 4.5-fold reduction, respectively).

The corresponding mutations in TC10 (K63E, referred to as TC10k, and K63E/T192E, referred to as TC10kk) provided K_d values of 5.8 μM and 3.7 μM, which correspond to affinity increases of 8- and 13-fold, respectively (Figure 4B). These data, as summarized in Table 1, demonstrate again that the association rate almost exclusively contributes to the change of the binding affinity. In contrast, substitution of lysine 49 of Rac1 (referred to as Rac1E) to glutamate did not result in any measurable binding of WASp or N-WASp (Table 1).

The BR and the CRIB of the GBD have been suggested to cooperatively regulate activation of the WAS proteins through binding to phosphatidylinositol-4,5-bisphosphate (PIP2) and activated Cdc42, respectively (Prehoda et al., 2000; Miki et al., 1998; Symons et al., 1996; Higgs and Pollard, 2000; Rohatgi et al., 2000). Judging from the Cdc42-WASpGBD complex structure (Abdul-Manan et al., 1999), the abundance of positively charged residues in the BR of the WAS proteins, however, strongly suggests that they might serve as a counterpart to the two glutamates of Cdc42. To test this assumption, we substituted both the KKR and KKK motifs of WASpGBD (Figure 3B) for neutral or negatively charged residues (referred to as WASpGDDAAA227, WASpGDDDEED227, WASpGDDAAA232, and WASpGDDDEEE232), respectively, and Lys231 for a glutamate (WASpGDDDE231) and investigated the kinetics of the interaction of these proteins with Cdc42wt. Unlike earlier work in which deletion of the BR did not affect binding of N-WASpGDBD to Cdc42 (Rohatgi et al., 2000), our kinetic measurements revealed a significant impairment of the Cdc42-WASpGDBD interaction capacity when we employed single or triple mutants instead of the WASpGDBDwt (Table 2). In this regard, there is a
clear difference concerning mutations of the KKR and KKK motifs on the one hand and a clear increase in K_d values when the net positive charges were decreased on the other hand (Figure 4C). The latter phenomenon is best demonstrated with the K231E mutation in the middle of the KKK motif that led to a drop by two orders of magnitude in WASpGBD affinity for Cdc42 (Table 2). Consequently, a dramatic loss of binding affinity (450-fold) was observed with the WASpGBD_EEE232 mutant. These data, together with the recurring observation in this study that only the association reaction is affected by point mutations, but not the dissociation reaction, per se, strongly suggest that the BR of WASp, particularly the KKK motif, provides the most critical residues to establish the electrostatic steering effect. The binding affinity of TC10 for the WASpGBD mutants was only slightly affected (data not shown), further indicating that the TC10-WASp association does not underlie an electrostatic steering mechanism.

WASp acts as a scaffold for binding the actin nucleating Arp2/3 complex and triggers actin polymerization upon activation by Cdc42. Thus, it was important to probe our kinetic data concerning electrostatics in the Cdc42-WASp association by an alternative WASp-driven functional assay. Therefore, we performed in vitro actin polymerization experiments using purified proteins such as full-length N-WASp or N-WASp domains as nucleating activity, which in most cases requires the disruption of intramolecular autoinhibition and the exposure of functional domains. One exception constitutes the interaction of WASp and N-WASp with Cdc42. This effector family has been extensively studied by several groups, resulting in a better understanding of how these regulatory mechanisms are integrated to control the localized activation of Arp2/3 (Prehoda et al., 2000; Rohatgi et al., 1999, 2000; Higgs and Pollard, 2000; Carlier et al., 2000; Yang et al., 2000). Biochemical and actin polymerization (Figure 4D). Interestingly, substitution of glutamates 49 and 178 to lysines in Cdc42 strongly affected the actin polymerization rate, comparable to the effect of the inactive Cdc42-GDP. On the contrary, TC10E was able to activate the reaction almost up to the level of Cdc42_wt (Figure 4D). Moreover, it is important to note that similar data were obtained with full-length N-WASp instead of the isolated GDP and VCA domains of WASp (Figure 4E). Taken together, these data are in excellent agreement with our kinetic data on the WASp interaction with the GTPases and clearly support the conclusion that electrostatic steering forces are critical components for Cdc42-WASp signaling.

Electrostatic Potentials of Cdc42 and TC10

An important role of electrostatic interactions is the steering of two proteins when they approach each other. The interactions accelerate their proper orientation and increase the rate of their association. Therefore, we calculated the electrostatic potential of Cdc42_wt (Figure 2C) and compared it with the electrostatic potentials of the respective Cdc42 mutants (Cdc42_2K and Cdc42_2KK). The “lobe” of negative potential around Cdc42 significantly decreases, particularly in the region where WASp positions the KKK motif of its BR (Figure 2C). Accordingly, the electrostatic binding energy of −510 kcal/mol calculated from the NMR structure of the Cdc42-WASp complex (Abdul-Manan et al., 1999) according to the Poisson-Boltzmann equation (see Experimental Procedures) was increased to −457 kcal/mol and −277 kcal/mol in Cdc42_2K and Cdc42_2KK, respectively. It is of interest to note that the negative potentials of Cdc42_wt in the vicinity of the BR of WASp were almost replaced by a positive electrostatic potential when Glu49 of Cdc42 was substituted by a lysine. This scenario is in good agreement with the findings of electrostatic potential calculations for TC10 as demonstrated by the equipotential contours of TC10_wt (Figure 2C) versus TC10E and, thus, nicely explains the dramatic difference of the k_{on} values for the WASpGBD association with Cdc42 and TC10 (Table 1). As a consequence, TC10 mutation at Lys63 and Thr192 to glutamates resulted in a drastic increase in electrostatic binding energies.

Discussion

Over the past few years, Rho GTPase interactions with their effector domains were well investigated both by biochemical and structural means (Bishop and Hall, 2000; Dvorsky and Ahmadian, 2004). This, however, has only in a few cases shed light on the mechanism of effector activation, which in most cases requires the disruption of intramolecular autoinhibition and the exposure of functional domains. One exception constitutes the interaction of WASp and N-WASp with Cdc42. This effector family has been extensively studied by several groups, resulting in a better understanding of how these regulatory mechanisms are integrated to control the localized activation of Arp2/3 (Prehoda et al., 2000; Rohatgi et al., 1999, 2000; Higgs and Pollard, 2000; Carlier et al., 2000; Yang et al., 2000). Biochemical and

Table 2. Kinetic Data of the Interaction of Cdc42 with WASpGBD Mutants

<table>
<thead>
<tr>
<th>WASpGBD</th>
<th>k_{on}</th>
<th>k_{off}</th>
<th>K_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>2.2</td>
<td>1.7</td>
<td>0.074</td>
</tr>
<tr>
<td>AAAAA</td>
<td>3.4</td>
<td>1.4</td>
<td>0.41</td>
</tr>
<tr>
<td>EEE</td>
<td>1.0</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>AEE</td>
<td>0.72</td>
<td>1.9</td>
<td>2.6</td>
</tr>
<tr>
<td>AAA</td>
<td>0.09</td>
<td>3.0</td>
<td>33</td>
</tr>
<tr>
<td>AAA227</td>
<td>0.59</td>
<td>4.1</td>
<td>6.9</td>
</tr>
</tbody>
</table>

The binding constants of the interaction of Cdc42_wt and different WASpGBD mutants are listed according to the data in Table 1.

NMR spectroscopic studies revealed mechanistic and structural details of the regulation of WASp and N-WASp, including its activation by Cdc42 through an allosteric mechanism (Buck et al., 2001, 2004; Kim et al., 2000; Abdul-Manan et al., 1999; Torres and Rosen, 2003; Cory et al., 2003). An important yet open issue, however, is the molecular mechanism of Cdc42 recognition by the WAS proteins, which is a critical step in regulating and integrating WASp signaling over time. Thus, this study investigated the interaction of the WAS proteins with different Rho GTPases in detail using biochemical, structural, and computational methods. Our results provide strong evidence for electrostatic steering as the primary and initial mechanism of molecular recognition of Cdc42-GTP by WASp and N-WASp.

With the presented data, we clearly show that the signal transduction of Cdc42 through WASp is association controlled. This is nicely documented by a nearly identical k_{on} and three orders of magnitude difference in the k_{off} value for the interaction of the WASpGBDs with Cdc42 versus TC10 (Table 1). Unlike earlier qualitative binding studies (Abe et al., 2003; Aspenstrom et al., 1995, 2004; Neudauer et al., 1998; Vignali et al., 2000), however, we did not detect any interaction of WASp or N-WASp with Rac1 and TCR even at high GBD concentrations of up to 50 μM and using two different fluorescence spectroscopic methods (Figure S2). The main reason for this is the two glutamates Glu49 and Glu178 of Cdc42, which are replaced by positively charged residues at the corresponding positions in most other Rho GTPases (Figure 3A). It is important to note that these residues are not part of the switch regions and thus are not involved in the nucleotide-dependent structural change of Cdc42 (Dvorsky and Ahmadian, 2004).

The electrostatic potential of the GppNHP bound structures of Cdc42 and TC10 allows the visualization of the opposed electrostatics of these GTPases (Figure 2C), which, when mutated, led to a loss of function in the case of Cdc42 and gain of function in the case of TC10. Experimental evidence has shown that electrostatics substantially enhance the association rate in a number of systems and thus play a major role in defining the mechanisms of molecular recognition and complex formation (Schreiber, 2002; Kiel et al., 2004; Sheinerman et al., 2000; Sinha and Smith-Gill, 2002). Recently, it has been shown that the generation of structurally based mutants in the Ras binding domain of an effector results in its faster binding to Ras (up to 25-fold due to an optimal electrostatic steering; Kiel et al., 2004). A double substitution of both glutamates 49 and 178 by lysines (Cdc42_EE) resulted in a 122-fold reduction of binding affinity. More noteworthy, however, is the fact that only the association rates of the mutants are affected, but not the dissociation rates (Table 1), emphasizing these residues as the hotspots for association. These kinetic data are supported by a functional assay that utilizes the scaffolding function of the WAS proteins in activating the Arp2/3 complex toward actin polymerization only in response to active Cdc42 (Figures 4D and 4E). Our observations strongly suggest that a fine-tuning of local and global electrostatic properties, in particular Glu49, is essential for the molecular recognition of Cdc42 by WAS proteins and further substantiates the significance of long-range charge-charge interactions in defining the mechanism of association, which is naturally absent in TC10.

On the other hand, our structural and biochemical data indicate that the interacting interfaces of WASp with Cdc42 and TC10 in the final complex are comparable, as TC10 contains a conserved WASp binding site (Figures 2A and 2B) and has k_{on} values in the same range as Cdc42 (Table 1). Amino acid deviations of the α1 helix of TC10 (CRIB binding region) were also proved not to contribute to the dramatic difference in k_{off} values (Table 1). Introduction of negative charges in TC10 (TC10EE) most interestingly led to a reasonably faster association with the WAS proteins, but it does not reach the rate of the Cdc42-WASp association. In this regard, calculated electrostatic potentials of the wild-type and mutant Cdc42 and TC10 provided striking insights (Figure 2C). In Cdc42, the “lobe” of negative potential (e.g., Glu49 and Glu178) is surrounded by the positive potential of several basic residues (e.g., His103, His104, Lys107, Lys150, and Lys153), which most likely help to direct the optimal orientation of Cdc42 to WAS proteins. This cannot be accomplished in TC10, which lacks these surrounding positively charged residues and, rather, exhibits an extended negative potential close to the association-determining residues. This data and the fact that the substitution of both glutamates in Cdc42 (Cdc42_EE) did not reduce its association rate to the same level as determined for TC10 (Table 1) indicate that other structural features apart from the two glutamates also contribute to the Cdc42-WASp association.

Thus, an electrostatic steering mechanism seems unlikely in the case of TC10 given the observation that changes of the net charge within the BR of WASp have only a minor effect on TC10 binding. In particular, we did not observe any significant TC10-mediated displacement of the VCA domain in the actin polymerization assay (Figures 4D and 4E). It seems that TC10, which lacks such a negative patch, is disabled in recognizing and disrupting the autoinhibited state of the full-length WASp. In conclusion, understanding the role of TC10 in activating WASp or N-WASp as possible downstream effectors, however, remains one of the more challenging tasks. We think that depending on the cellular context, the TC10-GTP-WASp complex formation requires assistance from an accessory factor (protein or lipid) that should help both molecules to overcome the 800-fold-slower association rate.

Nevertheless, by generating electrostatic forces for a more efficient TC10-WASp association by using the TC10_EE mutant, we have enhanced the capability of TC10 in WASp activation up to the level of Cdc42 (Figures 4D and 4E). This is remarkable because the k_{on} value for the association of TC10_EE with the WAS proteins is still 100-fold below that measured for Cdc42 (Table 1). In contrast to the kinetic measurements, which determine bimolecular interactions, enhanced actin polymerization requires both the GTPase association with WASp and the release of the Arp2/3 activator VCA. In the autoinhibited conformation of WASp, the C-terminal part of the GBD is masked by the VCA domain, as shown by structural analysis (Kim et al., 2000). According to our model (Figure 5), initial binding of Cdc42 to the WASp BR is re-
Figure 5. Model of the Electrostatic Steering Mechanism for the Association of the Autoinhibited WASp with Cdc42

The WASpGBD with the basic region (BR) and the CRIB motif is shown in blue and the C-terminal VCA peptide in magenta. The plus sign stands for positively charged residues and the minus sign indicates negatively charged residues. Abbreviations are as follows: WH1, WASp homology 1; PP, polyproline region.

required for the VCA displacement. Although TC10EE cannot establish an effective electrostatic steering with WASp, in the actin polymerization assay it may form the required complex with the BR of WASp via the two inserted glutamates and, thus, facilitate the release of VCA even more than Cdc42wt. Cdc42KK, on the other hand, though having a comparable affinity towards WASp as TC10EE (Table 1), is not able to bind the BR because of the repulsive forces generated by the two positively charged regions.

WASpGBD binds to four different regions (α1, switch I/β2, switch II/α2, and α5) of Cdc42 (Abdul-Manan et al., 1999), which show striking amino-acid deviations at the equivalent positions in GTPases of the Rho family (Figure 3A). This might be the reason that compared to TC10, we did not observe any interaction of the WAS proteins with Rac1 and TCL/RhoT. The latter share higher identity with TC10 at these regions, but there are two additional deviations in TCL (Asn84 and Gln85 instead of Asp65 and Arg66, respectively, in Cdc42; and Phe195 and His196 instead of Leu177 and Glu178, respectively), which might be another reason for its lack of binding to WASp. Thus, we exclude WAS proteins as the downstream effectors for TCL and propose that it may target other effector molecules involved in filopodia formation (Passey et al., 2004).

The basic region of the WAS proteins has been proposed to be involved in PIP2 binding that in turn plays a part in the Cdc42-mediated regulation of WAS protein activity (Prehoda et al., 2000; Miki et al., 1998; Symons et al., 1996; Higgs and Pollard, 2000; Rohatgi et al., 2000). Kinetic measurements carried out by using point mutations within the WASpBR clearly revealed that positively charged residues (Figure 3B) of the BR strongly contribute to the association reaction of the Cdc42-WASp interaction. Any changes of the basic residues in this region, particularly those of the KKK-motif, caused a significant loss of binding affinity, which is again primarily attributed to the changes of the association reaction (Figure 4C; Table 2). Taken together, we propose that the BRs of the WAS proteins play a critical role in Cdc42 recognition by supplying complementary electrostatics to the two unique glutamates 49 and 178 and is therefore in addition to the CRIB motif an integral component of the WASp and N-WASp GBD. It is important to note that in this regard we could not detect any interdependency between Cdc42 and PIP2 in WASp binding and activation (Figure S3).

An electrostatic steering mechanism can be excluded for most of the other Cdc42 effectors, which do not contain, with a few exceptions, a characteristic BR (Figure 3B). PAK consists of a KKKKEKER motif (with a net charge of 3) that is equivalent to the BR of the WASps, indicating that it may electrostatically assist the Cdc42-PAK association. Our data, however, exclude a major role of electrostatic steering for two reasons. First, the kon value for the PAK association with Cdc42 (which is 40-fold lower compared to the WASp association) was not changed when the critical glutamates in Cdc42 were replaced by lysines (Table 1). Secondly, PAK binds Cdc42 and Rac1 with 3-fold lower affinities, although Rac1 contains a lysine and a cysteine instead of the two critical glutamates (Figure 3A; Table 1). An explanation for this fact may be that in the Cdc42-PAK complex, the two glutamates of PAK (Glu69 and Glu71; Figure 3B) are in the vicinity of Glu49 of Cdc42 (Gizachew et al., 2000) and thus counteract the formation of the encounter complex. These and other effectors such as ACK, MLK, MRCK, and Par6 therefore need to employ alternative mechanisms in order to compete with WAS proteins and to efficiently associate with Cdc42-GTP.

As expected from their identity in sequence and in cellular action (Badour et al., 2003; Bompard and Caron, 2004; Higgs and Pollard, 1999; Millard et al., 2004; Miki and Takenawa, 2003; Takenawa and Miki, 2001; Thrasher, 2002), both WASp and N-WASp behave nearly identically in their GTPase binding characteristics (Table 1), suggesting a common mechanism by which Cdc42 activates the WAS proteins to stimulate the Arp2/3-mediated actin polymerization. Based on
our kinetic studies and the available structural data (Kim et al., 2000; Abdul-Manan et al., 1999), we propose a model for an electrostatic steering mechanism, which, resulting from long-range charge-charge interactions, dictates selective recognition of Cdc42 by WAS proteins (Figure 5). In the autoinhibited state (Kim et al., 2000), the C-terminal VCA domain of WASp interacts with many of the residues of the GBD that are also involved in the Cdc42-WASp interaction (Abdul-Manan et al., 1999), except for the BR and the CRIB. Cdc42 first approaches these regions and initiates a cooperative binding process (Buck et al., 2001, 2004) that includes both destabilization of the secondary structure elements of the autoinhibited WASp and folding of the GBD (Abdul-Manan et al., 1999). The complex formation with Cdc42 acts in synergy with different other local signals including PIP2, SH3-containing proteins (e.g., Grb2, NCK), and phosphorylation (Benesch et al., 2002; Bompard and Caron, 2004; Buck et al., 2004; Carrier et al., 2000; Higgs and Pollard, 1999; Prehoda et al., 2000; Rohatgi et al., 1999, 2000; Suetsugu et al., 2002; Torres and Rosen, 2003), which coordinate the activation of the Arp2/3 complex toward actin polymerization.

Conclusion

Over the past few years, four major, partly overlapping levels of regulation of the activity of WASp proteins have been uncovered (Bompard and Caron, 2004): interaction with binding partners, degradation, phosphorylation (Torres and Rosen, 2003; Cory et al., 2003), and subcellular distribution. In the present study, we propose an association-controlled mechanism for the selective Cdc42 recognition by the WAS proteins. With the basic region in WASps and the two glutamates in Cdc42, we identified two hotspots, which control the long-range interaction between active Cdc42 and the inactive WAS protein. This phenomenon, called electrostatic steering, is a critical step in initiating the Cdc42-mediated activation of the WAS proteins and dictates integration and transmission of signals in time. By definition, the involved components need not be necessarily involved in the final complex formation. Cdc42 causes not only the release of VCA but also the exposure of BR for interaction with the plasma membrane messenger PIP2.

Experimental Procedures

Plasmids

Human Cdc42 (residues 1–178; accession number nm_001791), Rac1 (1–184; nm_006908), RhoA (1–181; L25080), TC10 (2–193; nm_0012249), human WASpGBD (154–321; u19927), N-WASpGBD (142–276; nm_003941), and PAK1GBD (57–141; nm_002576) were cloned into pGEX expression vectors (pGEX 2T or pGEX 4T1). Mutations in Cdc42, Rac1, TC10, and WASp were obtained by QuikChange PCR mutagenesis (Stratagene).

Protein Preparation

All proteins were produced as glutathione S-transferase (GST) fusion proteins in Escherichia coli BL21 Rosetta. Glutathione (GSH)-sepharose (Pharmacia, Uppsala, Sweden) was used as the first purification step. After protease cleavage of the GST-tags, the proteins were applied to a gel filtration column (Superdex 75 or 200, Pharmacia, Uppsala, Sweden) and a subsequent GSH-sepharose column as the final step to obtain a purity of at least 95%. GppNHp- (guanosine 5’-γ-phosphate) and mantGppNHp (2’-3’-O-N-methylanthraniloyl-GppNHp) bound GTPase proteins were prepared by degrading bound GDP by alkaline phosphatase in the presence of 1.5-fold molar excess of GppNHp or mantGppNHp as described (Ahmadian et al., 2002). A prepacked gel filtration column (NAP5, Pharmacia) was used to remove unbound nucleotides. The concentrations of nucleotide bound proteins were determined by HPLC as described (Ahmadian et al., 2002). His-tagged N-WASp full-length was purified from High Five insect cells (Invitrogen) (Egile et al., 1999). The Arp2/3 complex was isolated from bovine brain (Egile et al., 1999), and actin was purified from rabbit muscle and labeled with pyrenyliodoacetamide (Pantaloni et al., 2000).

Fluorescence Measurements

Kinetic measurements of the GTPase-effector interaction were monitored with the fluorescently labeled GTP analog mantGppNHp by using an excitation wavelength of 366 nm. The emission was detected at 450 nm or with a cut-off filter above 408 nm. Slow kinetics were monitored in a Perkin-Elmer fluorescence spectrometer (LS50B, Norwalk, CT), and fast kinetics were monitored in a stopped-flow apparatus (Applied Photophysics, SX18MV, Surrey, UK). All measurements were performed in 30 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 50 mM NaCl, and 3 mM DTT at 25°C. Data obtained by the stopped-flow apparatus are averages of at least four independent measurements. Kinetic measurements of the direct binding of an effector to a mantGppNHp bound GTPase were carried out using the stopped-flow apparatus. Dissociation experiments were performed by displacing the bound effector from the complex with the mantGppNHp bound GTPase with an excess of unlabeled GppNHp bound GTPase to prevent it from reassociation with the labeled GTPase. The observed rate constants were fitted single exponentially using the GraFit program (Eurachem software).

Actin Polymerization Assay

The actin polymerization assays were performed according to M.-F. Carlier (Carlier et al., 2000). Briefly, 20 nM Arp2/3 complex was mixed with 100 nM N-WASp (full-length) or 100 nM N-WASpVCA and 1 μM N-WASpGBD in 5 mM Tris-HCl (pH 7.6), 0.1 mM CaCl2, 0.2 mM ATP, 1 mM dithiothreitol, 0.01% Na2 containing 100 mM KCl, 1 mM MgCl2, and 0.2 mM EGTA. Accessorily, 2 μM GppNHp bound GTPase was added to test its activation ability. After addition of 2.5 μM actin (10% pyrene-labeled), the reaction was monitored in a Xenius fluorescence spectrometer (SAFAS, Monaco, France) with an excitation wavelength of 366 nm and an emission wavelength of 407 nm.

Supplemental Data

Supplemental Data including three figures, one table, Supplemental Results, Experimental Procedures, and References are available online with this article at http://www.molecule.org/cgi/content/full/20/2/313/DC1/.

Acknowledgments

We gratefully thank A. Wittinghofer for discussions and continuous support; P. Stege for excellent technical assistance; and R. Goody and C. Herrmann for critically reading the manuscript. This work was supported by the Volkswagen-Stiftung (L.H.) and a Marie Curie Fellowship of the European Community (R.D.) and by a scholarship of the Verband der Chemischen Industrie (D.F.). M.-F. C. acknowledges financial support from the Ligue Nationale Contre le Cancer and from the HFSP grant RGP0072/2003-C.

Received: April 21, 2005
Revised: August 2, 2005
Accepted: August 31, 2005
Published: October 27, 2005

References

Accession Numbers

The coordinates of human TC10·GppNHp have been deposited in the Protein Data Bank under accession code 2ATX.